基于SSD的Fabric缺陷检测

Zhoufeng Liu, Shanliang Liu, Chunlei Li, S. Ding, Yan Dong
{"title":"基于SSD的Fabric缺陷检测","authors":"Zhoufeng Liu, Shanliang Liu, Chunlei Li, S. Ding, Yan Dong","doi":"10.1145/3282286.3282300","DOIUrl":null,"url":null,"abstract":"In this paper, Fabric defect detection is a challenging task because of the complex texture. Deep learning technology provide a promising solution. As a kind of deep learning object detection model. Single Shot Multibox Detector(SSD)achieves good detection performance. However, the original SSD model may fail to detect the small objects. In this paper, we proposed a novel SSD model for fabric defect detection. Experimental results showed that the improved SSD model can accurately detect the defect region.","PeriodicalId":324982,"journal":{"name":"Proceedings of the 2nd International Conference on Graphics and Signal Processing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Fabric Defects Detection based on SSD\",\"authors\":\"Zhoufeng Liu, Shanliang Liu, Chunlei Li, S. Ding, Yan Dong\",\"doi\":\"10.1145/3282286.3282300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Fabric defect detection is a challenging task because of the complex texture. Deep learning technology provide a promising solution. As a kind of deep learning object detection model. Single Shot Multibox Detector(SSD)achieves good detection performance. However, the original SSD model may fail to detect the small objects. In this paper, we proposed a novel SSD model for fabric defect detection. Experimental results showed that the improved SSD model can accurately detect the defect region.\",\"PeriodicalId\":324982,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Graphics and Signal Processing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Graphics and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3282286.3282300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3282286.3282300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

由于织物纹理的复杂性,织物缺陷检测是一项具有挑战性的任务。深度学习技术提供了一个很有前途的解决方案。作为一种深度学习的目标检测模型。单镜头多盒检测器(Single Shot Multibox Detector, SSD)具有良好的检测性能。但原有型号的SSD可能无法检测到小对象。本文提出了一种用于织物缺陷检测的SSD模型。实验结果表明,改进的SSD模型能够准确地检测出缺陷区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabric Defects Detection based on SSD
In this paper, Fabric defect detection is a challenging task because of the complex texture. Deep learning technology provide a promising solution. As a kind of deep learning object detection model. Single Shot Multibox Detector(SSD)achieves good detection performance. However, the original SSD model may fail to detect the small objects. In this paper, we proposed a novel SSD model for fabric defect detection. Experimental results showed that the improved SSD model can accurately detect the defect region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信