多声道音频衰减

A. Ozerov, Ç. Bilen, P. Pérez
{"title":"多声道音频衰减","authors":"A. Ozerov, Ç. Bilen, P. Pérez","doi":"10.1109/ICASSP.2016.7471757","DOIUrl":null,"url":null,"abstract":"Audio declipping consists in recovering so-called clipped audio samples that are set to a maximum / minimum threshold. Many different approaches were proposed to solve this problem in case of singlechannel (mono) recordings. However, while most of audio recordings are multichannel nowadays, there is no method designed specifically for multichannel audio declipping, where the inter-channel correlations may be efficiently exploited for a better declipping result. In this work we propose for the first time such a multichannel audio declipping method. Our method is based on representing a multichannel audio recording as a convolutive mixture of several audio sources, and on modeling the source power spectrograms and mixing filters by nonnegative tensor factorization model and full-rank covariance matrices, respectively. A generalized expectation-maximization algorithm is proposed to estimate model parameters. It is shown experimentally that the proposed multichannel audio de-clipping algorithm outperforms in average and in most cases a state-of-the-art single-channel declipping algorithm applied to each channel independently.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multichannel audio declipping\",\"authors\":\"A. Ozerov, Ç. Bilen, P. Pérez\",\"doi\":\"10.1109/ICASSP.2016.7471757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio declipping consists in recovering so-called clipped audio samples that are set to a maximum / minimum threshold. Many different approaches were proposed to solve this problem in case of singlechannel (mono) recordings. However, while most of audio recordings are multichannel nowadays, there is no method designed specifically for multichannel audio declipping, where the inter-channel correlations may be efficiently exploited for a better declipping result. In this work we propose for the first time such a multichannel audio declipping method. Our method is based on representing a multichannel audio recording as a convolutive mixture of several audio sources, and on modeling the source power spectrograms and mixing filters by nonnegative tensor factorization model and full-rank covariance matrices, respectively. A generalized expectation-maximization algorithm is proposed to estimate model parameters. It is shown experimentally that the proposed multichannel audio de-clipping algorithm outperforms in average and in most cases a state-of-the-art single-channel declipping algorithm applied to each channel independently.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7471757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7471757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

音频衰减包括恢复所谓的剪辑音频样本,设置为最大/最小阈值。许多不同的方法被提出来解决这个问题,在单通道(单声道)录音的情况下。然而,虽然现在大多数音频记录都是多通道的,但没有专门为多通道音频衰减设计的方法,可以有效地利用通道间的相关性来获得更好的衰减结果。在这项工作中,我们首次提出了这样一种多通道音频衰减方法。我们的方法基于将多声道音频记录表示为多个音频源的卷积混合,并分别通过非负张量分解模型和全秩协方差矩阵对源功率谱和混合滤波器进行建模。提出了一种广义期望最大化算法来估计模型参数。实验表明,所提出的多通道音频去剪辑算法在平均和大多数情况下优于独立应用于每个通道的最先进的单通道去剪辑算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multichannel audio declipping
Audio declipping consists in recovering so-called clipped audio samples that are set to a maximum / minimum threshold. Many different approaches were proposed to solve this problem in case of singlechannel (mono) recordings. However, while most of audio recordings are multichannel nowadays, there is no method designed specifically for multichannel audio declipping, where the inter-channel correlations may be efficiently exploited for a better declipping result. In this work we propose for the first time such a multichannel audio declipping method. Our method is based on representing a multichannel audio recording as a convolutive mixture of several audio sources, and on modeling the source power spectrograms and mixing filters by nonnegative tensor factorization model and full-rank covariance matrices, respectively. A generalized expectation-maximization algorithm is proposed to estimate model parameters. It is shown experimentally that the proposed multichannel audio de-clipping algorithm outperforms in average and in most cases a state-of-the-art single-channel declipping algorithm applied to each channel independently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信