两种基于硬c均值的公差数据聚类算法

Y. Hamasuna, Y. Endo, Yasushi Hasegawa, S. Miyamoto
{"title":"两种基于硬c均值的公差数据聚类算法","authors":"Y. Hamasuna, Y. Endo, Yasushi Hasegawa, S. Miyamoto","doi":"10.1109/FUZZY.2007.4295449","DOIUrl":null,"url":null,"abstract":"Two clustering algorithms that handle data with tolerance are proposed. One is based on hard c-means while the other uses the learning vector quantization. The concept of the tolerance includes. First, the concept of tolerance which implies errors, ranges and the loss of attribute of data is described. Optimization problems that take the tolerance into account are formulated. Since the Kuhn-Tucker condition give a unique and explicit optimal solution, an alternate minimization algorithm and a learning algorithm are constructed. Moreover, the effectiveness of the proposed algorithms is verified through numerical examples.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Two Clustering Algorithms for Data with Tolerance based on Hard c-Means\",\"authors\":\"Y. Hamasuna, Y. Endo, Yasushi Hasegawa, S. Miyamoto\",\"doi\":\"10.1109/FUZZY.2007.4295449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two clustering algorithms that handle data with tolerance are proposed. One is based on hard c-means while the other uses the learning vector quantization. The concept of the tolerance includes. First, the concept of tolerance which implies errors, ranges and the loss of attribute of data is described. Optimization problems that take the tolerance into account are formulated. Since the Kuhn-Tucker condition give a unique and explicit optimal solution, an alternate minimization algorithm and a learning algorithm are constructed. Moreover, the effectiveness of the proposed algorithms is verified through numerical examples.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了两种具有容差数据处理的聚类算法。一种是基于硬c均值,另一种是使用学习向量量化。宽容的概念包括。首先,描述了容差的概念,容差包括误差、范围和数据属性的损失。提出了考虑公差的优化问题。由于库恩-塔克条件给出了唯一且显式的最优解,构造了一种备用最小化算法和一种学习算法。最后,通过数值算例验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Clustering Algorithms for Data with Tolerance based on Hard c-Means
Two clustering algorithms that handle data with tolerance are proposed. One is based on hard c-means while the other uses the learning vector quantization. The concept of the tolerance includes. First, the concept of tolerance which implies errors, ranges and the loss of attribute of data is described. Optimization problems that take the tolerance into account are formulated. Since the Kuhn-Tucker condition give a unique and explicit optimal solution, an alternate minimization algorithm and a learning algorithm are constructed. Moreover, the effectiveness of the proposed algorithms is verified through numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信