Simone Scardapane, D. Comminiello, M. Scarpiniti, A. Uncini
{"title":"使用极限学习机进行音乐分类","authors":"Simone Scardapane, D. Comminiello, M. Scarpiniti, A. Uncini","doi":"10.1109/ISPA.2013.6703770","DOIUrl":null,"url":null,"abstract":"Over the last years, automatic music classification has become a standard benchmark problem in the machine learning community. This is partly due to its inherent difficulty, and also to the impact that a fully automated classification system can have in a commercial application. In this paper we test the efficiency of a relatively new learning tool, Extreme Learning Machines (ELM), for several classification tasks on publicly available song datasets. ELM is gaining increasing attention, due to its versatility and speed in adapting its internal parameters. Since both of these attributes are fundamental in music classification, ELM provides a good alternative to standard learning models. Our results support this claim, showing a sustained gain of ELM over a feedforward neural network architecture. In particular, ELM provides a great decrease in computational training time, and has always higher or comparable results in terms of efficiency.","PeriodicalId":425029,"journal":{"name":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Music classification using extreme learning machines\",\"authors\":\"Simone Scardapane, D. Comminiello, M. Scarpiniti, A. Uncini\",\"doi\":\"10.1109/ISPA.2013.6703770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last years, automatic music classification has become a standard benchmark problem in the machine learning community. This is partly due to its inherent difficulty, and also to the impact that a fully automated classification system can have in a commercial application. In this paper we test the efficiency of a relatively new learning tool, Extreme Learning Machines (ELM), for several classification tasks on publicly available song datasets. ELM is gaining increasing attention, due to its versatility and speed in adapting its internal parameters. Since both of these attributes are fundamental in music classification, ELM provides a good alternative to standard learning models. Our results support this claim, showing a sustained gain of ELM over a feedforward neural network architecture. In particular, ELM provides a great decrease in computational training time, and has always higher or comparable results in terms of efficiency.\",\"PeriodicalId\":425029,\"journal\":{\"name\":\"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2013.6703770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2013.6703770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Music classification using extreme learning machines
Over the last years, automatic music classification has become a standard benchmark problem in the machine learning community. This is partly due to its inherent difficulty, and also to the impact that a fully automated classification system can have in a commercial application. In this paper we test the efficiency of a relatively new learning tool, Extreme Learning Machines (ELM), for several classification tasks on publicly available song datasets. ELM is gaining increasing attention, due to its versatility and speed in adapting its internal parameters. Since both of these attributes are fundamental in music classification, ELM provides a good alternative to standard learning models. Our results support this claim, showing a sustained gain of ELM over a feedforward neural network architecture. In particular, ELM provides a great decrease in computational training time, and has always higher or comparable results in terms of efficiency.