基于随机亮度增强的深度学习对KL-2级膝关节骨性关节炎x线图像前后的分类

Supatman, E. M. Yuniarno, M. Purnomo
{"title":"基于随机亮度增强的深度学习对KL-2级膝关节骨性关节炎x线图像前后的分类","authors":"Supatman, E. M. Yuniarno, M. Purnomo","doi":"10.1109/CENIM56801.2022.10037483","DOIUrl":null,"url":null,"abstract":"Osteoarthritis of the knee (KOA) is a narrowing of the joint space area (JSA) due to lack of fluid in the knee joint, resulting in pain when moving and when it is severe, the femur and tibia meet. Medical personnel and existing computer-based methods have been able to detect patients with X-rays but have not been able to detect where visually the posterior AJ is still wide while the anterior AJ is actually narrow, so that the patient still feels joint pain. A new approach is proposed for the classification of X-Ray Grade Kellgren-Lawrence (KL)-2 Osteoarthritis Initiative image datasets using Deep Learning Neural Networks (DCNN) by setting the Random Brightness Augmentation hyperparameter. The experimental results obtained X-Ray Grade KL-2 narrowing image classification “Anterior View KOA” and “Posterior View KOA” with training accuracy of 83.33% and validation accuracy of 54.69% at Random Brightness with a value of 30.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification Anterior and Posterior of Knee Osteoarthritis X-Ray Images Grade KL-2 Using Deep Learning with Random Brightness Augmentation\",\"authors\":\"Supatman, E. M. Yuniarno, M. Purnomo\",\"doi\":\"10.1109/CENIM56801.2022.10037483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoarthritis of the knee (KOA) is a narrowing of the joint space area (JSA) due to lack of fluid in the knee joint, resulting in pain when moving and when it is severe, the femur and tibia meet. Medical personnel and existing computer-based methods have been able to detect patients with X-rays but have not been able to detect where visually the posterior AJ is still wide while the anterior AJ is actually narrow, so that the patient still feels joint pain. A new approach is proposed for the classification of X-Ray Grade Kellgren-Lawrence (KL)-2 Osteoarthritis Initiative image datasets using Deep Learning Neural Networks (DCNN) by setting the Random Brightness Augmentation hyperparameter. The experimental results obtained X-Ray Grade KL-2 narrowing image classification “Anterior View KOA” and “Posterior View KOA” with training accuracy of 83.33% and validation accuracy of 54.69% at Random Brightness with a value of 30.\",\"PeriodicalId\":118934,\"journal\":{\"name\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENIM56801.2022.10037483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

膝关节骨性关节炎(KOA)是由于膝关节缺乏液体导致关节间隙区域(JSA)狭窄,导致活动时疼痛,严重时,股骨和胫骨相遇。医疗人员和现有的基于计算机的方法已经能够通过x射线检测患者,但无法从视觉上检测到哪些部位的后AJ仍然宽,而前AJ实际上是窄的,因此患者仍然感到关节疼痛。提出了一种利用深度学习神经网络(DCNN)设置随机亮度增强超参数对x射线级Kellgren-Lawrence (KL)-2骨关节炎图像数据集进行分类的新方法。实验结果得到X-Ray Grade KL-2缩窄图像分类“前视图KOA”和“后视图KOA”,在随机亮度为30时,训练准确率为83.33%,验证准确率为54.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification Anterior and Posterior of Knee Osteoarthritis X-Ray Images Grade KL-2 Using Deep Learning with Random Brightness Augmentation
Osteoarthritis of the knee (KOA) is a narrowing of the joint space area (JSA) due to lack of fluid in the knee joint, resulting in pain when moving and when it is severe, the femur and tibia meet. Medical personnel and existing computer-based methods have been able to detect patients with X-rays but have not been able to detect where visually the posterior AJ is still wide while the anterior AJ is actually narrow, so that the patient still feels joint pain. A new approach is proposed for the classification of X-Ray Grade Kellgren-Lawrence (KL)-2 Osteoarthritis Initiative image datasets using Deep Learning Neural Networks (DCNN) by setting the Random Brightness Augmentation hyperparameter. The experimental results obtained X-Ray Grade KL-2 narrowing image classification “Anterior View KOA” and “Posterior View KOA” with training accuracy of 83.33% and validation accuracy of 54.69% at Random Brightness with a value of 30.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信