基于GMM和GPR的出行模式建模与未来出行行为预测

Wen Shen, Zhihua Wei, Chao Yang, Renxian Zhang
{"title":"基于GMM和GPR的出行模式建模与未来出行行为预测","authors":"Wen Shen, Zhihua Wei, Chao Yang, Renxian Zhang","doi":"10.1504/IJSPM.2018.095887","DOIUrl":null,"url":null,"abstract":"How to use historical data of public smart card to predict user behaviour attracts a lot of attention. This paper aims at modelling travel patterns and predicting future travel behaviour of metro system smart card holders. We apply Gaussian mixture model (GMM) on time series to model user behaviour. We propose a new method based on the perplexity for finite GMM and use expectation-maximisation (EM) algorithm to estimate parameters of GMM. In order to predict the future travel behaviour, we introduce the Gaussian process regression (GPR) to define distributions over GMM, which can not only tell the probability of travelling at a certain moment but also tell the reliability of the prediction. Experimental results show that our whole system in the centre of GMM and GPR can effectively mine the hidden knowledge of historical data of smart card, and thus model the travel patterns and predict future travel behaviour.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Travel pattern modelling and future travel behaviour prediction based on GMM and GPR\",\"authors\":\"Wen Shen, Zhihua Wei, Chao Yang, Renxian Zhang\",\"doi\":\"10.1504/IJSPM.2018.095887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to use historical data of public smart card to predict user behaviour attracts a lot of attention. This paper aims at modelling travel patterns and predicting future travel behaviour of metro system smart card holders. We apply Gaussian mixture model (GMM) on time series to model user behaviour. We propose a new method based on the perplexity for finite GMM and use expectation-maximisation (EM) algorithm to estimate parameters of GMM. In order to predict the future travel behaviour, we introduce the Gaussian process regression (GPR) to define distributions over GMM, which can not only tell the probability of travelling at a certain moment but also tell the reliability of the prediction. Experimental results show that our whole system in the centre of GMM and GPR can effectively mine the hidden knowledge of historical data of smart card, and thus model the travel patterns and predict future travel behaviour.\",\"PeriodicalId\":266151,\"journal\":{\"name\":\"Int. J. Simul. Process. Model.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Simul. Process. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSPM.2018.095887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2018.095887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如何利用公共智能卡的历史数据来预测用户的使用行为,引起了人们的广泛关注。本文旨在对地铁系统智能卡持有者的出行模式进行建模,并对其未来的出行行为进行预测。我们在时间序列上应用高斯混合模型(GMM)来模拟用户行为。提出了一种基于困惑度的有限GMM的新方法,并使用期望最大化(EM)算法来估计GMM的参数。为了预测未来的旅行行为,我们引入高斯过程回归(GPR)来定义GMM上的分布,该分布不仅可以告诉某一时刻的旅行概率,还可以告诉预测的可靠性。实验结果表明,以GMM和GPR为中心的整个系统可以有效地挖掘智能卡历史数据中的隐藏知识,从而对智能卡的出行模式进行建模并预测未来的出行行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Travel pattern modelling and future travel behaviour prediction based on GMM and GPR
How to use historical data of public smart card to predict user behaviour attracts a lot of attention. This paper aims at modelling travel patterns and predicting future travel behaviour of metro system smart card holders. We apply Gaussian mixture model (GMM) on time series to model user behaviour. We propose a new method based on the perplexity for finite GMM and use expectation-maximisation (EM) algorithm to estimate parameters of GMM. In order to predict the future travel behaviour, we introduce the Gaussian process regression (GPR) to define distributions over GMM, which can not only tell the probability of travelling at a certain moment but also tell the reliability of the prediction. Experimental results show that our whole system in the centre of GMM and GPR can effectively mine the hidden knowledge of historical data of smart card, and thus model the travel patterns and predict future travel behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信