新的支持向量数据描述决策函数

M. El Boujnouni, M. Jedra, N. Zahid
{"title":"新的支持向量数据描述决策函数","authors":"M. El Boujnouni, M. Jedra, N. Zahid","doi":"10.1109/INTECH.2012.6457768","DOIUrl":null,"url":null,"abstract":"In conventional support vector data description (SVDD), for each class we look for the smallest sphere that encloses its data. in the decision phase a sample is classified into class i only when the value of the ith decision function is positive. following this architecture, an unclassifiable region (s) can be appeared if the values of more than one decision function are positives. To overcome this problem, we propose a new simple and powerful decision function, which is used only in the overlappeds regions, this membership function can be calculated in the feature space and can be represented by kernels functions. This method gives good performance on reducing the effects of overlap and significantly improves the classification. We demonstrate the performance of our decision function using six benchmark datasets.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New decision function for support vector data description\",\"authors\":\"M. El Boujnouni, M. Jedra, N. Zahid\",\"doi\":\"10.1109/INTECH.2012.6457768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In conventional support vector data description (SVDD), for each class we look for the smallest sphere that encloses its data. in the decision phase a sample is classified into class i only when the value of the ith decision function is positive. following this architecture, an unclassifiable region (s) can be appeared if the values of more than one decision function are positives. To overcome this problem, we propose a new simple and powerful decision function, which is used only in the overlappeds regions, this membership function can be calculated in the feature space and can be represented by kernels functions. This method gives good performance on reducing the effects of overlap and significantly improves the classification. We demonstrate the performance of our decision function using six benchmark datasets.\",\"PeriodicalId\":369113,\"journal\":{\"name\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTECH.2012.6457768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在传统的支持向量数据描述(SVDD)中,对于每个类,我们寻找包含其数据的最小球体。在决策阶段,只有当第I个决策函数的值为正时,样本才被归为第I类。按照这个体系结构,如果一个以上的决策函数的值是正的,就会出现一个不可分类的区域。为了克服这一问题,我们提出了一种新的简单而强大的决策函数,该决策函数仅用于重叠区域,该隶属度函数可以在特征空间中计算并可以用核函数表示。该方法在减少重叠影响方面有很好的效果,显著提高了分类效率。我们使用六个基准数据集来演示决策函数的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New decision function for support vector data description
In conventional support vector data description (SVDD), for each class we look for the smallest sphere that encloses its data. in the decision phase a sample is classified into class i only when the value of the ith decision function is positive. following this architecture, an unclassifiable region (s) can be appeared if the values of more than one decision function are positives. To overcome this problem, we propose a new simple and powerful decision function, which is used only in the overlappeds regions, this membership function can be calculated in the feature space and can be represented by kernels functions. This method gives good performance on reducing the effects of overlap and significantly improves the classification. We demonstrate the performance of our decision function using six benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信