诱导可读的倾斜决策树

Antonin Leroux, M. Boussard, R. Dès
{"title":"诱导可读的倾斜决策树","authors":"Antonin Leroux, M. Boussard, R. Dès","doi":"10.1109/ICTAI.2018.00069","DOIUrl":null,"url":null,"abstract":"Although machine learning models are found in more and more practical applications, stakeholders can be suspicious about the fact that they are not hard-coded and fully specified. To foster trust, it is crucial to provide models whose predictions are explainable. Decision Trees can be understood by humans if they are simple enough, but they suffer in accuracy when compared to other common machine learning methods. Oblique Decision Trees can provide better accuracy and smaller trees, but their decision rules are more complex. This article presents MUST (Multivariate Understandable Statistical Tree), an Oblique Decision Tree split algorithm based on Linear Discriminant Analysis that aims to preserve explainability by limiting the number of variables that appear in decision rules.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inducing Readable Oblique Decision Trees\",\"authors\":\"Antonin Leroux, M. Boussard, R. Dès\",\"doi\":\"10.1109/ICTAI.2018.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although machine learning models are found in more and more practical applications, stakeholders can be suspicious about the fact that they are not hard-coded and fully specified. To foster trust, it is crucial to provide models whose predictions are explainable. Decision Trees can be understood by humans if they are simple enough, but they suffer in accuracy when compared to other common machine learning methods. Oblique Decision Trees can provide better accuracy and smaller trees, but their decision rules are more complex. This article presents MUST (Multivariate Understandable Statistical Tree), an Oblique Decision Tree split algorithm based on Linear Discriminant Analysis that aims to preserve explainability by limiting the number of variables that appear in decision rules.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管机器学习模型在越来越多的实际应用中被发现,但利益相关者可能会怀疑它们没有硬编码和完全指定的事实。为了培养信任,提供预测可解释的模型至关重要。如果决策树足够简单,人类是可以理解的,但与其他常见的机器学习方法相比,它们的准确性会受到影响。倾斜决策树可以提供更好的准确性和更小的树,但它们的决策规则更复杂。本文提出了MUST(多元可理解统计树),这是一种基于线性判别分析的倾斜决策树分割算法,旨在通过限制决策规则中出现的变量数量来保持可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inducing Readable Oblique Decision Trees
Although machine learning models are found in more and more practical applications, stakeholders can be suspicious about the fact that they are not hard-coded and fully specified. To foster trust, it is crucial to provide models whose predictions are explainable. Decision Trees can be understood by humans if they are simple enough, but they suffer in accuracy when compared to other common machine learning methods. Oblique Decision Trees can provide better accuracy and smaller trees, but their decision rules are more complex. This article presents MUST (Multivariate Understandable Statistical Tree), an Oblique Decision Tree split algorithm based on Linear Discriminant Analysis that aims to preserve explainability by limiting the number of variables that appear in decision rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信