{"title":"数值变化下的期权定价公式","authors":"Antonio Attalienti, Michele Bufalo","doi":"10.2139/ssrn.3451116","DOIUrl":null,"url":null,"abstract":"We present some formulations of the Cox-Ross-Rubinstein and Black-Scholes formulas for European options obtained through a suitable change of measure, which corresponds to a change of numèraire for the underlying price process. Among other consequences, a closed formula for the price of an European call option at each node of the multi-period binomial tree is achieved, too. Some of the results contained herein, though comparable with analogous ones appearing elsewhere in the financial literature, provide however a supplementary widening and deepening in view of useful applications in the more challenging framework of incomplete markets. This last issue, having the present paper as a preparatory material, will be treated extensively in a forthcoming paper.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Option Pricing Formulas Under a Change of Numèraire\",\"authors\":\"Antonio Attalienti, Michele Bufalo\",\"doi\":\"10.2139/ssrn.3451116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present some formulations of the Cox-Ross-Rubinstein and Black-Scholes formulas for European options obtained through a suitable change of measure, which corresponds to a change of numèraire for the underlying price process. Among other consequences, a closed formula for the price of an European call option at each node of the multi-period binomial tree is achieved, too. Some of the results contained herein, though comparable with analogous ones appearing elsewhere in the financial literature, provide however a supplementary widening and deepening in view of useful applications in the more challenging framework of incomplete markets. This last issue, having the present paper as a preparatory material, will be treated extensively in a forthcoming paper.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3451116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3451116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Option Pricing Formulas Under a Change of Numèraire
We present some formulations of the Cox-Ross-Rubinstein and Black-Scholes formulas for European options obtained through a suitable change of measure, which corresponds to a change of numèraire for the underlying price process. Among other consequences, a closed formula for the price of an European call option at each node of the multi-period binomial tree is achieved, too. Some of the results contained herein, though comparable with analogous ones appearing elsewhere in the financial literature, provide however a supplementary widening and deepening in view of useful applications in the more challenging framework of incomplete markets. This last issue, having the present paper as a preparatory material, will be treated extensively in a forthcoming paper.