用松弛线性规划解决组合优化问题:高性能计算的视角

Chen Jin, Qiang Fu, Huahua Wang, Ankit Agrawal, W. Hendrix, W. Liao, Md. Mostofa Ali Patwary, A. Banerjee, A. Choudhary
{"title":"用松弛线性规划解决组合优化问题:高性能计算的视角","authors":"Chen Jin, Qiang Fu, Huahua Wang, Ankit Agrawal, W. Hendrix, W. Liao, Md. Mostofa Ali Patwary, A. Banerjee, A. Choudhary","doi":"10.1145/2501221.2501227","DOIUrl":null,"url":null,"abstract":"Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.","PeriodicalId":441216,"journal":{"name":"BigMine '13","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Solving combinatorial optimization problems using relaxed linear programming: a high performance computing perspective\",\"authors\":\"Chen Jin, Qiang Fu, Huahua Wang, Ankit Agrawal, W. Hendrix, W. Liao, Md. Mostofa Ali Patwary, A. Banerjee, A. Choudhary\",\"doi\":\"10.1145/2501221.2501227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.\",\"PeriodicalId\":441216,\"journal\":{\"name\":\"BigMine '13\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BigMine '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2501221.2501227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BigMine '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501221.2501227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

一些重要的组合优化问题可以用离散图模型中的最大后验推理来表述。为了充分利用现代数千核超级计算机的计算能力,我们采用了最近提出的并行MAP推理算法Bethe-ADMM,并利用消息传递接口(MPI)实现了该算法。实验结果表明,即使有数千个内核,我们的并行实现也几乎是线性扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving combinatorial optimization problems using relaxed linear programming: a high performance computing perspective
Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信