{"title":"基于多尺度域自适应的旋转机械跨域故障诊断","authors":"Yifei Ding, M. Jia","doi":"10.1109/PHM-Yantai55411.2022.9941970","DOIUrl":null,"url":null,"abstract":"Transfer learning (TL), especially domain adaptation (DA), has greatly enhanced the cross-domain fault diagnosis of rotating machines. However, the existing methods based on feature alignment at a single scale are still inadequate for complex cross-domain generalization, and thus have much room for improvement. Therefore, this work proposed a multi-scale domain adaptation network (MSDAN) to achieve representation alignment with multiple scales. By minimizing the uniquely designed combined mean maximum discrepancy (CoMMD) metrics, MSDAN is able to learn more domain-invariant representations on multi-scale branches. The case study that learns multi-scale domain adaptation (MSDN) with vibration signals of cross-domain bearings fully validates the feasibility of this method. Comparison with state-of-the-art methods also shows the necessity and advantages of simultaneous domain adaptation on multi-scale representations.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Domain Fault Diagnosis for Rotating Machines with Multi-Scale Domain Adaptation\",\"authors\":\"Yifei Ding, M. Jia\",\"doi\":\"10.1109/PHM-Yantai55411.2022.9941970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transfer learning (TL), especially domain adaptation (DA), has greatly enhanced the cross-domain fault diagnosis of rotating machines. However, the existing methods based on feature alignment at a single scale are still inadequate for complex cross-domain generalization, and thus have much room for improvement. Therefore, this work proposed a multi-scale domain adaptation network (MSDAN) to achieve representation alignment with multiple scales. By minimizing the uniquely designed combined mean maximum discrepancy (CoMMD) metrics, MSDAN is able to learn more domain-invariant representations on multi-scale branches. The case study that learns multi-scale domain adaptation (MSDN) with vibration signals of cross-domain bearings fully validates the feasibility of this method. Comparison with state-of-the-art methods also shows the necessity and advantages of simultaneous domain adaptation on multi-scale representations.\",\"PeriodicalId\":315994,\"journal\":{\"name\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM-Yantai55411.2022.9941970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Yantai55411.2022.9941970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Domain Fault Diagnosis for Rotating Machines with Multi-Scale Domain Adaptation
Transfer learning (TL), especially domain adaptation (DA), has greatly enhanced the cross-domain fault diagnosis of rotating machines. However, the existing methods based on feature alignment at a single scale are still inadequate for complex cross-domain generalization, and thus have much room for improvement. Therefore, this work proposed a multi-scale domain adaptation network (MSDAN) to achieve representation alignment with multiple scales. By minimizing the uniquely designed combined mean maximum discrepancy (CoMMD) metrics, MSDAN is able to learn more domain-invariant representations on multi-scale branches. The case study that learns multi-scale domain adaptation (MSDN) with vibration signals of cross-domain bearings fully validates the feasibility of this method. Comparison with state-of-the-art methods also shows the necessity and advantages of simultaneous domain adaptation on multi-scale representations.