基于组件的软件系统运行时性能预测的参数依赖性建模

Simon Eismann, J. Walter, J. V. Kistowski, Samuel Kounev
{"title":"基于组件的软件系统运行时性能预测的参数依赖性建模","authors":"Simon Eismann, J. Walter, J. V. Kistowski, Samuel Kounev","doi":"10.1109/ICSA.2018.00023","DOIUrl":null,"url":null,"abstract":"Model-based performance analysis can be leveraged to explore performance properties of software systems. To capture the behavior of varying workload mixes, configurations, and deployments of a software system requires formal modeling of the impact of configuration parameters and user input on the system behavior. Such influences are represented as parametric dependencies in software performance models. Existing modeling approaches focus on modeling parametric dependencies at design-time. This paper identifies runtime specific parametric dependency features, which are not supported by existing work. Therefore, this paper proposes a novel modeling methodology for parametric dependencies and a corresponding graph-based resolution algorithm. This algorithm enables the solution of models containing component instance-level dependencies, variables with multiple descriptions in parallel, and correlations modeled as parametric dependencies. We integrate our work into the Descartes Modeling Language (DML), allowing for accurate and efficient modeling and analysis of parametric dependencies. These performance predictions are valuable for various purposes such as capacity planning, bottleneck analysis, configuration optimization and proactive auto-scaling. Our evaluation analyzes a video store application. The prediction for varying language mixes and video sizes shows a mean error below 5% for utilization and below 10% for response time.","PeriodicalId":142325,"journal":{"name":"2018 IEEE International Conference on Software Architecture (ICSA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling of Parametric Dependencies for Performance Prediction of Component-Based Software Systems at Run-Time\",\"authors\":\"Simon Eismann, J. Walter, J. V. Kistowski, Samuel Kounev\",\"doi\":\"10.1109/ICSA.2018.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based performance analysis can be leveraged to explore performance properties of software systems. To capture the behavior of varying workload mixes, configurations, and deployments of a software system requires formal modeling of the impact of configuration parameters and user input on the system behavior. Such influences are represented as parametric dependencies in software performance models. Existing modeling approaches focus on modeling parametric dependencies at design-time. This paper identifies runtime specific parametric dependency features, which are not supported by existing work. Therefore, this paper proposes a novel modeling methodology for parametric dependencies and a corresponding graph-based resolution algorithm. This algorithm enables the solution of models containing component instance-level dependencies, variables with multiple descriptions in parallel, and correlations modeled as parametric dependencies. We integrate our work into the Descartes Modeling Language (DML), allowing for accurate and efficient modeling and analysis of parametric dependencies. These performance predictions are valuable for various purposes such as capacity planning, bottleneck analysis, configuration optimization and proactive auto-scaling. Our evaluation analyzes a video store application. The prediction for varying language mixes and video sizes shows a mean error below 5% for utilization and below 10% for response time.\",\"PeriodicalId\":142325,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Architecture (ICSA)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Architecture (ICSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSA.2018.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

可以利用基于模型的性能分析来探索软件系统的性能属性。为了捕获软件系统的不同工作负载混合、配置和部署的行为,需要对配置参数和用户输入对系统行为的影响进行正式建模。这些影响在软件性能模型中表示为参数依赖性。现有的建模方法侧重于在设计时对参数依赖性进行建模。本文确定了运行时特定的参数依赖特性,现有的工作不支持这些特性。因此,本文提出了一种新的参数依赖性建模方法和相应的基于图的解析算法。该算法支持求解包含组件实例级依赖关系、具有多个并行描述的变量以及作为参数依赖关系建模的相关性的模型。我们将我们的工作集成到笛卡尔建模语言(DML)中,允许对参数依赖性进行准确和有效的建模和分析。这些性能预测对于容量规划、瓶颈分析、配置优化和主动自动扩展等各种用途都很有价值。我们的评估分析了一个视频商店的应用。对不同语言组合和视频大小的预测显示,利用率的平均误差低于5%,响应时间的平均误差低于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of Parametric Dependencies for Performance Prediction of Component-Based Software Systems at Run-Time
Model-based performance analysis can be leveraged to explore performance properties of software systems. To capture the behavior of varying workload mixes, configurations, and deployments of a software system requires formal modeling of the impact of configuration parameters and user input on the system behavior. Such influences are represented as parametric dependencies in software performance models. Existing modeling approaches focus on modeling parametric dependencies at design-time. This paper identifies runtime specific parametric dependency features, which are not supported by existing work. Therefore, this paper proposes a novel modeling methodology for parametric dependencies and a corresponding graph-based resolution algorithm. This algorithm enables the solution of models containing component instance-level dependencies, variables with multiple descriptions in parallel, and correlations modeled as parametric dependencies. We integrate our work into the Descartes Modeling Language (DML), allowing for accurate and efficient modeling and analysis of parametric dependencies. These performance predictions are valuable for various purposes such as capacity planning, bottleneck analysis, configuration optimization and proactive auto-scaling. Our evaluation analyzes a video store application. The prediction for varying language mixes and video sizes shows a mean error below 5% for utilization and below 10% for response time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信