SPMD代码的可扩展负载平衡测量

T. Gamblin, B. Supinski, M. Schulz, R. Fowler, D. Reed
{"title":"SPMD代码的可扩展负载平衡测量","authors":"T. Gamblin, B. Supinski, M. Schulz, R. Fowler, D. Reed","doi":"10.1145/1413370.1413417","DOIUrl":null,"url":null,"abstract":"Good load balance is crucial on very large parallel systems, but the most sophisticated algorithms introduce dynamic imbalances through adaptation in domain decomposition or use of adaptive solvers. To observe and diagnose imbalance, developers need system-wide, temporally-ordered measurements from full-scale runs. This potentially requires data collection from multiple code regions on all processors over the entire execution. Doing this instrumentation naively can, in combination with the application itself, exceed available I/O bandwidth and storage capacity, and can induce severe behavioral perturbations. We present and evaluate a novel technique for scalable, low-error load balance measurement. This uses a parallel wavelet transform and other parallel encoding methods. We show that our technique collects and reconstructs system-wide measurements with low error. Compression time scales sublinearly with system size and data volume is several orders of magnitude smaller than the raw data. The overhead is low enough for online use in a production environment.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Scalable load-balance measurement for SPMD codes\",\"authors\":\"T. Gamblin, B. Supinski, M. Schulz, R. Fowler, D. Reed\",\"doi\":\"10.1145/1413370.1413417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Good load balance is crucial on very large parallel systems, but the most sophisticated algorithms introduce dynamic imbalances through adaptation in domain decomposition or use of adaptive solvers. To observe and diagnose imbalance, developers need system-wide, temporally-ordered measurements from full-scale runs. This potentially requires data collection from multiple code regions on all processors over the entire execution. Doing this instrumentation naively can, in combination with the application itself, exceed available I/O bandwidth and storage capacity, and can induce severe behavioral perturbations. We present and evaluate a novel technique for scalable, low-error load balance measurement. This uses a parallel wavelet transform and other parallel encoding methods. We show that our technique collects and reconstructs system-wide measurements with low error. Compression time scales sublinearly with system size and data volume is several orders of magnitude smaller than the raw data. The overhead is low enough for online use in a production environment.\",\"PeriodicalId\":230761,\"journal\":{\"name\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1413370.1413417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

良好的负载平衡对于非常大的并行系统至关重要,但大多数复杂的算法通过域分解中的自适应或使用自适应求解器引入动态不平衡。为了观察和诊断不平衡,开发人员需要从全面运行中进行系统范围的、临时有序的测量。这可能需要在整个执行过程中从所有处理器上的多个代码区域收集数据。天真地执行这种检测,再加上应用程序本身,可能会超出可用的I/O带宽和存储容量,并可能导致严重的行为扰动。我们提出并评估了一种可扩展的、低误差负载平衡测量的新技术。这使用了并行小波变换和其他并行编码方法。我们证明了我们的技术以低误差收集和重建系统范围的测量。压缩时间尺度与系统大小和数据量呈亚线性关系,比原始数据小几个数量级。开销足够低,可以在生产环境中在线使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable load-balance measurement for SPMD codes
Good load balance is crucial on very large parallel systems, but the most sophisticated algorithms introduce dynamic imbalances through adaptation in domain decomposition or use of adaptive solvers. To observe and diagnose imbalance, developers need system-wide, temporally-ordered measurements from full-scale runs. This potentially requires data collection from multiple code regions on all processors over the entire execution. Doing this instrumentation naively can, in combination with the application itself, exceed available I/O bandwidth and storage capacity, and can induce severe behavioral perturbations. We present and evaluate a novel technique for scalable, low-error load balance measurement. This uses a parallel wavelet transform and other parallel encoding methods. We show that our technique collects and reconstructs system-wide measurements with low error. Compression time scales sublinearly with system size and data volume is several orders of magnitude smaller than the raw data. The overhead is low enough for online use in a production environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信