5G的峰值平均功率比降低方案和潜力描述

S. Mohammady, J. Dooley, R. Farrell, N. Sulaiman
{"title":"5G的峰值平均功率比降低方案和潜力描述","authors":"S. Mohammady, J. Dooley, R. Farrell, N. Sulaiman","doi":"10.1109/RFM.2018.8846484","DOIUrl":null,"url":null,"abstract":"Peak to Average Power Ratio (PAR or PAPR) is one of the most challenging issues in the operation of Orthogonal Frequency Division Multiplexing (OFDM) for multicarrier signals used in Fourth and Fifth Generation of broadband cellular network technology (4G and 5G). There are numerous PAPR reduction or also recognized as Crest Factor Reduction (CFR) techniques, for instance Clipping, Coding, Dummy Sequence Insertion (DSI), Tone Reservation, Active Constellation Sequence (ACE), Partial Transmit Sequence (PTS), and Selective Mapping (SLM) schemes. Among these methods, SLM-based techniques are very attractive solutions due to their good performance without additional-of-band radiations or in-band distortions. This study demonstrates a performance analysis of an SLM-based method combined with adding randomly generated dummy sequences to power-free subcarriers. Simulation results show that the PAPR of the OFDM based signal can be reduced efficiently by using adequate number of dummies and tolerable number of iterations, and that is a potential scheme for 4G and 5G.","PeriodicalId":111726,"journal":{"name":"2018 IEEE International RF and Microwave Conference (RFM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Depiction of Peak to Average Power Ratio Reduction Scheme and potentials for 5G\",\"authors\":\"S. Mohammady, J. Dooley, R. Farrell, N. Sulaiman\",\"doi\":\"10.1109/RFM.2018.8846484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peak to Average Power Ratio (PAR or PAPR) is one of the most challenging issues in the operation of Orthogonal Frequency Division Multiplexing (OFDM) for multicarrier signals used in Fourth and Fifth Generation of broadband cellular network technology (4G and 5G). There are numerous PAPR reduction or also recognized as Crest Factor Reduction (CFR) techniques, for instance Clipping, Coding, Dummy Sequence Insertion (DSI), Tone Reservation, Active Constellation Sequence (ACE), Partial Transmit Sequence (PTS), and Selective Mapping (SLM) schemes. Among these methods, SLM-based techniques are very attractive solutions due to their good performance without additional-of-band radiations or in-band distortions. This study demonstrates a performance analysis of an SLM-based method combined with adding randomly generated dummy sequences to power-free subcarriers. Simulation results show that the PAPR of the OFDM based signal can be reduced efficiently by using adequate number of dummies and tolerable number of iterations, and that is a potential scheme for 4G and 5G.\",\"PeriodicalId\":111726,\"journal\":{\"name\":\"2018 IEEE International RF and Microwave Conference (RFM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International RF and Microwave Conference (RFM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFM.2018.8846484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International RF and Microwave Conference (RFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2018.8846484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

峰值平均功率比(PAR或PAPR)是第四代和第五代宽带蜂窝网络技术(4G和5G)中使用的多载波信号的正交频分复用(OFDM)操作中最具挑战性的问题之一。有许多PAPR降低或也被认为是波峰因子降低(CFR)技术,例如裁剪,编码,虚拟序列插入(DSI),音调保留,主动星座序列(ACE),部分传输序列(PTS)和选择性映射(SLM)方案。在这些方法中,基于slm的技术由于其良好的性能而没有额外的带外辐射或带内失真而非常有吸引力。本研究展示了一种基于slm的方法的性能分析,该方法结合了在无功率子载波中添加随机生成的虚拟序列。仿真结果表明,采用适当的假人个数和可容忍的迭代次数可以有效地降低基于OFDM的信号的PAPR,是一种潜在的4G和5G方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depiction of Peak to Average Power Ratio Reduction Scheme and potentials for 5G
Peak to Average Power Ratio (PAR or PAPR) is one of the most challenging issues in the operation of Orthogonal Frequency Division Multiplexing (OFDM) for multicarrier signals used in Fourth and Fifth Generation of broadband cellular network technology (4G and 5G). There are numerous PAPR reduction or also recognized as Crest Factor Reduction (CFR) techniques, for instance Clipping, Coding, Dummy Sequence Insertion (DSI), Tone Reservation, Active Constellation Sequence (ACE), Partial Transmit Sequence (PTS), and Selective Mapping (SLM) schemes. Among these methods, SLM-based techniques are very attractive solutions due to their good performance without additional-of-band radiations or in-band distortions. This study demonstrates a performance analysis of an SLM-based method combined with adding randomly generated dummy sequences to power-free subcarriers. Simulation results show that the PAPR of the OFDM based signal can be reduced efficiently by using adequate number of dummies and tolerable number of iterations, and that is a potential scheme for 4G and 5G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信