阿拉伯手语识别使用视觉和手跟踪特征与HMM

A. A. I. Sidig, H. Luqman, S. Mahmoud
{"title":"阿拉伯手语识别使用视觉和手跟踪特征与HMM","authors":"A. A. I. Sidig, H. Luqman, S. Mahmoud","doi":"10.1504/IJISTA.2019.10022617","DOIUrl":null,"url":null,"abstract":"Sign language employs signs made by hands and facial expressions to convey meaning. Sign language recognition facilitates the communication between community and hearing-impaired people. This work proposes a recognition system for Arabic sign language using four types of features, namely modified Fourier transform, local binary pattern, histogram of oriented gradients, and a combination of histogram of oriented gradients and histogram of optical flow. These features are evaluated using hidden Markov model on two databases. The best performance is achieved with modified Fourier transform and histogram of oriented gradients features with 99.11% and 99.33% accuracies, respectively. In addition, two algorithms are proposed, one for segmenting sign video streams captured by Microsoft Kinect V2 into signs and the second for hand detection in video streams. The obtained results show that our algorithms are efficient in segmenting sign video streams and detecting hands in video streams.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Arabic sign language recognition using vision and hand tracking features with HMM\",\"authors\":\"A. A. I. Sidig, H. Luqman, S. Mahmoud\",\"doi\":\"10.1504/IJISTA.2019.10022617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sign language employs signs made by hands and facial expressions to convey meaning. Sign language recognition facilitates the communication between community and hearing-impaired people. This work proposes a recognition system for Arabic sign language using four types of features, namely modified Fourier transform, local binary pattern, histogram of oriented gradients, and a combination of histogram of oriented gradients and histogram of optical flow. These features are evaluated using hidden Markov model on two databases. The best performance is achieved with modified Fourier transform and histogram of oriented gradients features with 99.11% and 99.33% accuracies, respectively. In addition, two algorithms are proposed, one for segmenting sign video streams captured by Microsoft Kinect V2 into signs and the second for hand detection in video streams. The obtained results show that our algorithms are efficient in segmenting sign video streams and detecting hands in video streams.\",\"PeriodicalId\":420808,\"journal\":{\"name\":\"Int. J. Intell. Syst. Technol. Appl.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Syst. Technol. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJISTA.2019.10022617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2019.10022617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

手语使用手势和面部表情来传达意思。手语识别有助于社区和听障人士之间的交流。本文提出了一种基于修正傅立叶变换、局部二值模式、定向梯度直方图、定向梯度直方图和光流直方图相结合四种特征的阿拉伯手语识别系统。在两个数据库上使用隐马尔可夫模型对这些特征进行了评估。改进的傅里叶变换和定向梯度特征直方图分别以99.11%和99.33%的准确率达到了最佳效果。此外,还提出了两种算法,一种算法用于将微软Kinect V2捕获的手势视频流分割为手势,另一种算法用于视频流中的手部检测。实验结果表明,该算法在标识视频流分割和手部检测方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic sign language recognition using vision and hand tracking features with HMM
Sign language employs signs made by hands and facial expressions to convey meaning. Sign language recognition facilitates the communication between community and hearing-impaired people. This work proposes a recognition system for Arabic sign language using four types of features, namely modified Fourier transform, local binary pattern, histogram of oriented gradients, and a combination of histogram of oriented gradients and histogram of optical flow. These features are evaluated using hidden Markov model on two databases. The best performance is achieved with modified Fourier transform and histogram of oriented gradients features with 99.11% and 99.33% accuracies, respectively. In addition, two algorithms are proposed, one for segmenting sign video streams captured by Microsoft Kinect V2 into signs and the second for hand detection in video streams. The obtained results show that our algorithms are efficient in segmenting sign video streams and detecting hands in video streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信