核范数与Frobenius范数正则化截断差的低秩矩阵最小化

Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng
{"title":"核范数与Frobenius范数正则化截断差的低秩矩阵最小化","authors":"Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng","doi":"10.3934/jimo.2022045","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we present a novel regularization with a truncated difference of nuclear norm and Frobenius norm of form <inline-formula><tex-math id=\"M1\">\\begin{document}$ L_{t,*-\\alpha F} $\\end{document}</tex-math></inline-formula> with an integer <inline-formula><tex-math id=\"M2\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> and parameter <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\alpha $\\end{document}</tex-math></inline-formula> for rank minimization problem. The forward-backward splitting (FBS) algorithm is proposed to solve such a regularization problem, whose subproblems are shown to have closed-form solutions. We show that any accumulation point of the sequence generated by the FBS algorithm is a first-order stationary point. In the end, the numerical results demonstrate that the proposed FBS algorithm outperforms the existing methods.</p>","PeriodicalId":347719,"journal":{"name":"Journal of Industrial &amp; Management Optimization","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization\",\"authors\":\"Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng\",\"doi\":\"10.3934/jimo.2022045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we present a novel regularization with a truncated difference of nuclear norm and Frobenius norm of form <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ L_{t,*-\\\\alpha F} $\\\\end{document}</tex-math></inline-formula> with an integer <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> and parameter <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\alpha $\\\\end{document}</tex-math></inline-formula> for rank minimization problem. The forward-backward splitting (FBS) algorithm is proposed to solve such a regularization problem, whose subproblems are shown to have closed-form solutions. We show that any accumulation point of the sequence generated by the FBS algorithm is a first-order stationary point. In the end, the numerical results demonstrate that the proposed FBS algorithm outperforms the existing methods.</p>\",\"PeriodicalId\":347719,\"journal\":{\"name\":\"Journal of Industrial &amp; Management Optimization\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial &amp; Management Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2022045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial &amp; Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

In this paper, we present a novel regularization with a truncated difference of nuclear norm and Frobenius norm of form \begin{document}$ L_{t,*-\alpha F} $\end{document} with an integer \begin{document}$ t $\end{document} and parameter \begin{document}$ \alpha $\end{document} for rank minimization problem. The forward-backward splitting (FBS) algorithm is proposed to solve such a regularization problem, whose subproblems are shown to have closed-form solutions. We show that any accumulation point of the sequence generated by the FBS algorithm is a first-order stationary point. In the end, the numerical results demonstrate that the proposed FBS algorithm outperforms the existing methods.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization

In this paper, we present a novel regularization with a truncated difference of nuclear norm and Frobenius norm of form \begin{document}$ L_{t,*-\alpha F} $\end{document} with an integer \begin{document}$ t $\end{document} and parameter \begin{document}$ \alpha $\end{document} for rank minimization problem. The forward-backward splitting (FBS) algorithm is proposed to solve such a regularization problem, whose subproblems are shown to have closed-form solutions. We show that any accumulation point of the sequence generated by the FBS algorithm is a first-order stationary point. In the end, the numerical results demonstrate that the proposed FBS algorithm outperforms the existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信