基于卷积神经网络的汉字验证码识别

Xiangyun Zhang, Jin Zhang, Shuiping Zhang
{"title":"基于卷积神经网络的汉字验证码识别","authors":"Xiangyun Zhang, Jin Zhang, Shuiping Zhang","doi":"10.1145/3366715.3366724","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to achieve effective recognition of Chinese character CAPTCHA, we propose a convolutional neural network model with reference to LeNet-5, the number of convolution kernels is increased to enable more efficient extraction of features, while adding dropout layers to prevent overfitting and adding normalized layers to prevent gradient explosions. The model takes the grayscale, binarization, and segmented CAPTCHA pictures as input, and outputs the vector of 3,500 dimensions which indicate the probability of each Chinese character. After training, the model can achieve a recognition rate of 99.6%. The experiment also compares the model with existing model, the results show that the model can identify Chinese character CAPTCHA more effectively.","PeriodicalId":425980,"journal":{"name":"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chinese Character CAPTCHA Recognition Based on Convolutional Neural Network\",\"authors\":\"Xiangyun Zhang, Jin Zhang, Shuiping Zhang\",\"doi\":\"10.1145/3366715.3366724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to achieve effective recognition of Chinese character CAPTCHA, we propose a convolutional neural network model with reference to LeNet-5, the number of convolution kernels is increased to enable more efficient extraction of features, while adding dropout layers to prevent overfitting and adding normalized layers to prevent gradient explosions. The model takes the grayscale, binarization, and segmented CAPTCHA pictures as input, and outputs the vector of 3,500 dimensions which indicate the probability of each Chinese character. After training, the model can achieve a recognition rate of 99.6%. The experiment also compares the model with existing model, the results show that the model can identify Chinese character CAPTCHA more effectively.\",\"PeriodicalId\":425980,\"journal\":{\"name\":\"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366715.3366724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366715.3366724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目标是实现对汉字CAPTCHA的有效识别,我们提出了一种参考LeNet-5的卷积神经网络模型,增加卷积核的数量以实现更高效的特征提取,同时增加dropout层以防止过拟合,增加归一化层以防止梯度爆炸。该模型以灰度化、二值化、分割后的验证码图片为输入,输出3500维向量,表示每个汉字出现的概率。经过训练,该模型的识别率达到99.6%。实验还将该模型与现有模型进行了比较,结果表明该模型能更有效地识别出汉字验证码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Character CAPTCHA Recognition Based on Convolutional Neural Network
The goal of this paper is to achieve effective recognition of Chinese character CAPTCHA, we propose a convolutional neural network model with reference to LeNet-5, the number of convolution kernels is increased to enable more efficient extraction of features, while adding dropout layers to prevent overfitting and adding normalized layers to prevent gradient explosions. The model takes the grayscale, binarization, and segmented CAPTCHA pictures as input, and outputs the vector of 3,500 dimensions which indicate the probability of each Chinese character. After training, the model can achieve a recognition rate of 99.6%. The experiment also compares the model with existing model, the results show that the model can identify Chinese character CAPTCHA more effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信