levy驱动的Ornstein-Uhlenbeck过程对交易策略的分析价值函数

Lan Wu, Xin Zang, Hongxin Zhao
{"title":"levy驱动的Ornstein-Uhlenbeck过程对交易策略的分析价值函数","authors":"Lan Wu, Xin Zang, Hongxin Zhao","doi":"10.2139/ssrn.3553064","DOIUrl":null,"url":null,"abstract":"This paper studies the performance of pairs trading strategy under a specific spread model. Based on the empirical evidence of mean reversion and jumps in the spread between pairs of stocks, we assume that the spread follows a Levy-driven Ornstein-Uhlenbeck process with twosided jumps. To evaluate the performance of a pairs trading strategy, we propose the expected return per unit time as the value function of the strategy. Significantly different from the current related works, we incorporate an excess jump component into the calculation of return and time cost. Further, we obtain the analytic expression of strategy value function, where we solve out the probabilities of crossing thresholds via the Laplace transform of first passage time of the Levy driven Ornstein-Uhlenbeck process in one-sided and two-sided exit problems. Through numerical illustrations, we calculate the value function and optimal thresholds for a spread model with symmetric jumps, reveal the non-negligible contribution of incorporating the excess jumps into the value function, and analyze the impact of model parameters on the strategy performance.","PeriodicalId":198417,"journal":{"name":"DecisionSciRN: Stock Market Decision-Making (Sub-Topic)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Value Function for Pairs Trading Strategy With a Levy-Driven Ornstein-Uhlenbeck Process\",\"authors\":\"Lan Wu, Xin Zang, Hongxin Zhao\",\"doi\":\"10.2139/ssrn.3553064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the performance of pairs trading strategy under a specific spread model. Based on the empirical evidence of mean reversion and jumps in the spread between pairs of stocks, we assume that the spread follows a Levy-driven Ornstein-Uhlenbeck process with twosided jumps. To evaluate the performance of a pairs trading strategy, we propose the expected return per unit time as the value function of the strategy. Significantly different from the current related works, we incorporate an excess jump component into the calculation of return and time cost. Further, we obtain the analytic expression of strategy value function, where we solve out the probabilities of crossing thresholds via the Laplace transform of first passage time of the Levy driven Ornstein-Uhlenbeck process in one-sided and two-sided exit problems. Through numerical illustrations, we calculate the value function and optimal thresholds for a spread model with symmetric jumps, reveal the non-negligible contribution of incorporating the excess jumps into the value function, and analyze the impact of model parameters on the strategy performance.\",\"PeriodicalId\":198417,\"journal\":{\"name\":\"DecisionSciRN: Stock Market Decision-Making (Sub-Topic)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DecisionSciRN: Stock Market Decision-Making (Sub-Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3553064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Stock Market Decision-Making (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3553064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了特定价差模型下的配对交易策略的性能。基于均值回归和股票对价差跳跃的经验证据,我们假设价差遵循levy驱动的Ornstein-Uhlenbeck过程,具有双向跳跃。为了评估配对交易策略的绩效,我们提出单位时间的期望收益作为该策略的价值函数。与目前的相关工作显著不同的是,我们在收益和时间成本的计算中加入了超额跳跃分量。进一步,我们得到了策略值函数的解析表达式,其中我们通过Levy驱动的Ornstein-Uhlenbeck过程在单边和双边出口问题中首次通过时间的拉普拉斯变换求解出了跨越阈值的概率。通过数值算例,我们计算了具有对称跳跃的扩散模型的价值函数和最优阈值,揭示了将多余的跳跃纳入价值函数的不可忽略的贡献,并分析了模型参数对策略性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic Value Function for Pairs Trading Strategy With a Levy-Driven Ornstein-Uhlenbeck Process
This paper studies the performance of pairs trading strategy under a specific spread model. Based on the empirical evidence of mean reversion and jumps in the spread between pairs of stocks, we assume that the spread follows a Levy-driven Ornstein-Uhlenbeck process with twosided jumps. To evaluate the performance of a pairs trading strategy, we propose the expected return per unit time as the value function of the strategy. Significantly different from the current related works, we incorporate an excess jump component into the calculation of return and time cost. Further, we obtain the analytic expression of strategy value function, where we solve out the probabilities of crossing thresholds via the Laplace transform of first passage time of the Levy driven Ornstein-Uhlenbeck process in one-sided and two-sided exit problems. Through numerical illustrations, we calculate the value function and optimal thresholds for a spread model with symmetric jumps, reveal the non-negligible contribution of incorporating the excess jumps into the value function, and analyze the impact of model parameters on the strategy performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信