Nur Insyirah Ahmad Shukri, Norhayati Bt Sabani, Ruslinda Bt A. Rahim, M. Fathil, S. Sabki, N. H. Halim, Nur Syakimah Binti Ismail
{"title":"石墨烯转移法制备双酚A (BPA)检测电极","authors":"Nur Insyirah Ahmad Shukri, Norhayati Bt Sabani, Ruslinda Bt A. Rahim, M. Fathil, S. Sabki, N. H. Halim, Nur Syakimah Binti Ismail","doi":"10.1109/sennano51750.2021.9642581","DOIUrl":null,"url":null,"abstract":"Exposure of BPA is a concern as BPA can seep into food or beverages from containers and can possibly effects on human health especially endocrine systems. An electrochemical-based aptasensor utilizing graphene was developed in detecting endocrine disrupting compound Bisphenol A (BPA, 4,4'-(propane-2,2-diyl) diphenol). The graphene modified electrode was developed via graphene transfer. Fabrication and characterization of graphene transfer was studied in this paper using Scanning Electron Microscopy (SEM) and High-Power Microscope (HPM). In this research, the investigation of interfacial characteristic modified graphene with aptasensor and recognition of BPA with aptasensor had been done using electrochemical impedance spectroscopy (EIS). The increment of charge transfer resistance (Rct) before and after recognition of BPA denoting the accumulation of charge at the electrode surface in this research.","PeriodicalId":325031,"journal":{"name":"2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Graphene Electrode via Graphene Transfer Method for Bisphenol A (BPA) Detection\",\"authors\":\"Nur Insyirah Ahmad Shukri, Norhayati Bt Sabani, Ruslinda Bt A. Rahim, M. Fathil, S. Sabki, N. H. Halim, Nur Syakimah Binti Ismail\",\"doi\":\"10.1109/sennano51750.2021.9642581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exposure of BPA is a concern as BPA can seep into food or beverages from containers and can possibly effects on human health especially endocrine systems. An electrochemical-based aptasensor utilizing graphene was developed in detecting endocrine disrupting compound Bisphenol A (BPA, 4,4'-(propane-2,2-diyl) diphenol). The graphene modified electrode was developed via graphene transfer. Fabrication and characterization of graphene transfer was studied in this paper using Scanning Electron Microscopy (SEM) and High-Power Microscope (HPM). In this research, the investigation of interfacial characteristic modified graphene with aptasensor and recognition of BPA with aptasensor had been done using electrochemical impedance spectroscopy (EIS). The increment of charge transfer resistance (Rct) before and after recognition of BPA denoting the accumulation of charge at the electrode surface in this research.\",\"PeriodicalId\":325031,\"journal\":{\"name\":\"2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sennano51750.2021.9642581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sennano51750.2021.9642581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Graphene Electrode via Graphene Transfer Method for Bisphenol A (BPA) Detection
Exposure of BPA is a concern as BPA can seep into food or beverages from containers and can possibly effects on human health especially endocrine systems. An electrochemical-based aptasensor utilizing graphene was developed in detecting endocrine disrupting compound Bisphenol A (BPA, 4,4'-(propane-2,2-diyl) diphenol). The graphene modified electrode was developed via graphene transfer. Fabrication and characterization of graphene transfer was studied in this paper using Scanning Electron Microscopy (SEM) and High-Power Microscope (HPM). In this research, the investigation of interfacial characteristic modified graphene with aptasensor and recognition of BPA with aptasensor had been done using electrochemical impedance spectroscopy (EIS). The increment of charge transfer resistance (Rct) before and after recognition of BPA denoting the accumulation of charge at the electrode surface in this research.