{"title":"分离多项式的小根的公式","authors":"Tateaki Sasaki, Akira Terui","doi":"10.1145/603273.603277","DOIUrl":null,"url":null,"abstract":"Let <i>P(x)</i> be a univariate polynomial over C, such that <i>P(x) = c<inf>n</inf>x<sup>n</sup> + ... + c<inf>m+1</inf>x<sup>m+1</sup> + x<sup>m</sup> + e<inf>m-1</inf>x<sup>m-1</sup> + ... + e<inf>0</inf>,</i> where max{<i>|c<inf>n</inf>|, ..., |c<inf>m+1</inf>|</i>} = 1 and <i>e</i> = max{<i>|e<inf>m-1</inf>|, |e<inf>m-2</inf>|<sup>1/2</sup>, ..., |e<inf>0</inf>|<sup>1/m</sup></i>} << 1. <i>P(x)</i> has <i>m</i> small roots around the origin so long as <i>e</i> << 1. In 1999, we derived a formula that if <i>e</i> < 1/9 then <i>P(x)</i> has <i>m</i> roots inside a disc <i>D</i><inf>in</inf> of radius <i>R</i><inf>in</inf> and other <i>n - m</i> roots outside a disc <i>D</i><inf>out</inf> of radius <i>R</i><inf>out</inf>, located at the origin, where <i>R</i><inf>in(out)</inf> = [1 - (+) √1 - (16<i>e</i>)/(1 + 3<i>e</i>)<sup>2</sup>] × (1 + 3<i>e</i>)/4. Note that <i>R</i><inf>in</inf> = <i>R</i><inf>out</inf> if <i>e</i> = 1/9. Our formula is essentially the same as that derived independently by Yakoubsohn at almost the same time. In this short article, we introduce the formula and check its sharpness on many polynomials generated randomly.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A formula for separating small roots of a polynomial\",\"authors\":\"Tateaki Sasaki, Akira Terui\",\"doi\":\"10.1145/603273.603277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>P(x)</i> be a univariate polynomial over C, such that <i>P(x) = c<inf>n</inf>x<sup>n</sup> + ... + c<inf>m+1</inf>x<sup>m+1</sup> + x<sup>m</sup> + e<inf>m-1</inf>x<sup>m-1</sup> + ... + e<inf>0</inf>,</i> where max{<i>|c<inf>n</inf>|, ..., |c<inf>m+1</inf>|</i>} = 1 and <i>e</i> = max{<i>|e<inf>m-1</inf>|, |e<inf>m-2</inf>|<sup>1/2</sup>, ..., |e<inf>0</inf>|<sup>1/m</sup></i>} << 1. <i>P(x)</i> has <i>m</i> small roots around the origin so long as <i>e</i> << 1. In 1999, we derived a formula that if <i>e</i> < 1/9 then <i>P(x)</i> has <i>m</i> roots inside a disc <i>D</i><inf>in</inf> of radius <i>R</i><inf>in</inf> and other <i>n - m</i> roots outside a disc <i>D</i><inf>out</inf> of radius <i>R</i><inf>out</inf>, located at the origin, where <i>R</i><inf>in(out)</inf> = [1 - (+) √1 - (16<i>e</i>)/(1 + 3<i>e</i>)<sup>2</sup>] × (1 + 3<i>e</i>)/4. Note that <i>R</i><inf>in</inf> = <i>R</i><inf>out</inf> if <i>e</i> = 1/9. Our formula is essentially the same as that derived independently by Yakoubsohn at almost the same time. In this short article, we introduce the formula and check its sharpness on many polynomials generated randomly.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/603273.603277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/603273.603277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
设P(x)是C上的单变量多项式,使得P(x) = cnxn +…+ cm+1xm+1 + xm+ em-1xm-1 +…+ e0, where max{|cn|,…, |cm+1|} = 1 and e = max{|em-1|, |em-2|1/2,…, P(x)在原点周围有m个小根,只要e e < 1/9,那么P(x)在半径为Rin的圆盘Din内有m个根,在半径为Rout的圆盘Dout外有n - m个根,位于原点,其中Rin(out) =[1 -(+)√1 - (16e)/(1 + 3e)2] × (1 + 3e)/4。注意,如果e = 1/9,则Rin = route。我们的公式和yakubsohn在同一时间独立导出的公式本质上是一样的。在这篇短文中,我们介绍了这个公式,并在随机生成的许多多项式上检验了它的锐度。
A formula for separating small roots of a polynomial
Let P(x) be a univariate polynomial over C, such that P(x) = cnxn + ... + cm+1xm+1 + xm + em-1xm-1 + ... + e0, where max{|cn|, ..., |cm+1|} = 1 and e = max{|em-1|, |em-2|1/2, ..., |e0|1/m} << 1. P(x) has m small roots around the origin so long as e << 1. In 1999, we derived a formula that if e < 1/9 then P(x) has m roots inside a disc Din of radius Rin and other n - m roots outside a disc Dout of radius Rout, located at the origin, where Rin(out) = [1 - (+) √1 - (16e)/(1 + 3e)2] × (1 + 3e)/4. Note that Rin = Rout if e = 1/9. Our formula is essentially the same as that derived independently by Yakoubsohn at almost the same time. In this short article, we introduce the formula and check its sharpness on many polynomials generated randomly.