A. Sardo, J. Reis, Luís Duarte, N. Leonor, C. Ribeiro, R. Caldeirinha
{"title":"24ghz STDCC雷达:首次测量试验","authors":"A. Sardo, J. Reis, Luís Duarte, N. Leonor, C. Ribeiro, R. Caldeirinha","doi":"10.23919/URSIGASS49373.2020.9232154","DOIUrl":null,"url":null,"abstract":"This paper presents the first measurement trials for performance assessment of a real-time and high resolution monostatic radar operating at 24 GHz. The proposed real-time radar, which operates based on the sliding correlation of pseudo-noise (PN) sequences, provides a high time resolution better than 4 ns, useful for moving target identification (MTI) in the presence of highly dense clutter, under harsh environments and severe weather conditions (fog, snow and fire smoke or plume). The STDCC radar target detection capability is demonstrated in this paper, by measuring and identifying the radar data for 4 distinct scenarios, composed of multiple targets (up to 8), inside an anechoic chamber, demonstrating the potential of the proposed radar architecture.","PeriodicalId":438881,"journal":{"name":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STDCC radar at 24 GHz: first measurement trials\",\"authors\":\"A. Sardo, J. Reis, Luís Duarte, N. Leonor, C. Ribeiro, R. Caldeirinha\",\"doi\":\"10.23919/URSIGASS49373.2020.9232154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the first measurement trials for performance assessment of a real-time and high resolution monostatic radar operating at 24 GHz. The proposed real-time radar, which operates based on the sliding correlation of pseudo-noise (PN) sequences, provides a high time resolution better than 4 ns, useful for moving target identification (MTI) in the presence of highly dense clutter, under harsh environments and severe weather conditions (fog, snow and fire smoke or plume). The STDCC radar target detection capability is demonstrated in this paper, by measuring and identifying the radar data for 4 distinct scenarios, composed of multiple targets (up to 8), inside an anechoic chamber, demonstrating the potential of the proposed radar architecture.\",\"PeriodicalId\":438881,\"journal\":{\"name\":\"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSIGASS49373.2020.9232154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS49373.2020.9232154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents the first measurement trials for performance assessment of a real-time and high resolution monostatic radar operating at 24 GHz. The proposed real-time radar, which operates based on the sliding correlation of pseudo-noise (PN) sequences, provides a high time resolution better than 4 ns, useful for moving target identification (MTI) in the presence of highly dense clutter, under harsh environments and severe weather conditions (fog, snow and fire smoke or plume). The STDCC radar target detection capability is demonstrated in this paper, by measuring and identifying the radar data for 4 distinct scenarios, composed of multiple targets (up to 8), inside an anechoic chamber, demonstrating the potential of the proposed radar architecture.