基于Logistic回归、朴素贝叶斯和支持向量机的阿塞拜疆语情感分析

Huseyn Hasanli, S. Rustamov
{"title":"基于Logistic回归、朴素贝叶斯和支持向量机的阿塞拜疆语情感分析","authors":"Huseyn Hasanli, S. Rustamov","doi":"10.1109/AICT47866.2019.8981793","DOIUrl":null,"url":null,"abstract":"In the work, the roadmap of sentiment analysis of twits in Azerbaijani language has been developed. The principles of collecting, cleaning and annotating of twits for Azerbaijani language are described. Machine learning algorithms, such as Linear regression, Naïve Bayes and SVM applied to detect sentiment polarity of text based on bag of word models. Our suggested approach for data processing and classification can be easily adapted and applied to other Turkish language. Achieved results from different machine learning algorithm have been compared and defined optimal parameters for the classification of twits.","PeriodicalId":329473,"journal":{"name":"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sentiment Analysis of Azerbaijani twits Using Logistic Regression, Naive Bayes and SVM\",\"authors\":\"Huseyn Hasanli, S. Rustamov\",\"doi\":\"10.1109/AICT47866.2019.8981793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the work, the roadmap of sentiment analysis of twits in Azerbaijani language has been developed. The principles of collecting, cleaning and annotating of twits for Azerbaijani language are described. Machine learning algorithms, such as Linear regression, Naïve Bayes and SVM applied to detect sentiment polarity of text based on bag of word models. Our suggested approach for data processing and classification can be easily adapted and applied to other Turkish language. Achieved results from different machine learning algorithm have been compared and defined optimal parameters for the classification of twits.\",\"PeriodicalId\":329473,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT47866.2019.8981793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT47866.2019.8981793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在工作中,制定了阿塞拜疆语推文情感分析路线图。介绍了阿塞拜疆语抽语的收集、清理和注释原则。基于词袋模型,采用线性回归、Naïve贝叶斯和SVM等机器学习算法检测文本的情感极性。我们建议的数据处理和分类方法可以很容易地适应并应用于其他土耳其语言。比较了不同机器学习算法的分类结果,确定了twits分类的最优参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Azerbaijani twits Using Logistic Regression, Naive Bayes and SVM
In the work, the roadmap of sentiment analysis of twits in Azerbaijani language has been developed. The principles of collecting, cleaning and annotating of twits for Azerbaijani language are described. Machine learning algorithms, such as Linear regression, Naïve Bayes and SVM applied to detect sentiment polarity of text based on bag of word models. Our suggested approach for data processing and classification can be easily adapted and applied to other Turkish language. Achieved results from different machine learning algorithm have been compared and defined optimal parameters for the classification of twits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信