空间金字塔动态图卷积辅助两阶段U-Net在OCT图像视网膜层和视盘分割中的应用

Junying Zeng, Yingbo Wang, Weibin Luo, Yucong Chen, Chuanbo Qin, Yajin Gu, Huiming Tian, Yunxiong Chen
{"title":"空间金字塔动态图卷积辅助两阶段U-Net在OCT图像视网膜层和视盘分割中的应用","authors":"Junying Zeng, Yingbo Wang, Weibin Luo, Yucong Chen, Chuanbo Qin, Yajin Gu, Huiming Tian, Yunxiong Chen","doi":"10.1145/3577117.3577141","DOIUrl":null,"url":null,"abstract":"Retinal nerve fiber layer (RNFL) thickness in retinal optical coherence tomography (OCT) images is commonly used in the diagnosis of glaucoma. However, due to the presence of the optic disc, the retinal tissue surrounding the optic disc is difficult to segment. To solve this problem, this paper uses a two-stage U-Net as the inference framework, inserts a pyramid dynamic graph inference module in the two-stage U-Net framework, and performs coarse-to-fine graph feature inference between the encoder and the decoder. Finally, a two-stage segmentation model SpDGRU-Net is proposed to segment the retinal layer and optic disc respectively. This paper conducts experiments on the OCT public dataset, and the proposed SpDGRU-Net segmentation network achieves an average Dice score of 0.826 and an average pixel accuracy of 0.835, both of which outperform other state-of-the-art techniques.","PeriodicalId":309874,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Image Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Pyramid Dynamic Graph Convolution Assisted Two-Stage U-Net for Retinal Layer and Optic Disc Segmentation in OCT Images\",\"authors\":\"Junying Zeng, Yingbo Wang, Weibin Luo, Yucong Chen, Chuanbo Qin, Yajin Gu, Huiming Tian, Yunxiong Chen\",\"doi\":\"10.1145/3577117.3577141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal nerve fiber layer (RNFL) thickness in retinal optical coherence tomography (OCT) images is commonly used in the diagnosis of glaucoma. However, due to the presence of the optic disc, the retinal tissue surrounding the optic disc is difficult to segment. To solve this problem, this paper uses a two-stage U-Net as the inference framework, inserts a pyramid dynamic graph inference module in the two-stage U-Net framework, and performs coarse-to-fine graph feature inference between the encoder and the decoder. Finally, a two-stage segmentation model SpDGRU-Net is proposed to segment the retinal layer and optic disc respectively. This paper conducts experiments on the OCT public dataset, and the proposed SpDGRU-Net segmentation network achieves an average Dice score of 0.826 and an average pixel accuracy of 0.835, both of which outperform other state-of-the-art techniques.\",\"PeriodicalId\":309874,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Advances in Image Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Advances in Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577117.3577141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577117.3577141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视网膜光学相干断层扫描(OCT)图像中视网膜神经纤维层(RNFL)厚度是青光眼的常用诊断指标。然而,由于视盘的存在,视盘周围的视网膜组织难以分割。为了解决这一问题,本文采用两阶段U-Net作为推理框架,在两阶段U-Net框架中插入金字塔动态图推理模块,在编码器和解码器之间进行从粗到精的图特征推理。最后,提出了一种两阶段分割模型spdgu - net,分别对视网膜层和视盘进行分割。本文在OCT公共数据集上进行了实验,所提出的spdgu - net分割网络的平均Dice得分为0.826,平均像素精度为0.835,均优于其他最新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Pyramid Dynamic Graph Convolution Assisted Two-Stage U-Net for Retinal Layer and Optic Disc Segmentation in OCT Images
Retinal nerve fiber layer (RNFL) thickness in retinal optical coherence tomography (OCT) images is commonly used in the diagnosis of glaucoma. However, due to the presence of the optic disc, the retinal tissue surrounding the optic disc is difficult to segment. To solve this problem, this paper uses a two-stage U-Net as the inference framework, inserts a pyramid dynamic graph inference module in the two-stage U-Net framework, and performs coarse-to-fine graph feature inference between the encoder and the decoder. Finally, a two-stage segmentation model SpDGRU-Net is proposed to segment the retinal layer and optic disc respectively. This paper conducts experiments on the OCT public dataset, and the proposed SpDGRU-Net segmentation network achieves an average Dice score of 0.826 and an average pixel accuracy of 0.835, both of which outperform other state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信