{"title":"基于密钥分块图像变换的防盗版DNN水印","authors":"Maungmaung Aprilpyone, H. Kiya","doi":"10.1145/3437880.3460398","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel DNN watermarking method that utilizes a learnable image transformation method with a secret key. The proposed method embeds a watermark pattern in a model by using learnable transformed images and allows us to remotely verify the ownership of the model. As a result, it is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark, and adding a new watermark decreases the model accuracy unlike most of the existing DNN watermarking methods. In addition, it does not require a special pre-defined training set or trigger set. We empirically evaluated the proposed method on the CIFAR-10 dataset. The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Piracy-Resistant DNN Watermarking by Block-Wise Image Transformation with Secret Key\",\"authors\":\"Maungmaung Aprilpyone, H. Kiya\",\"doi\":\"10.1145/3437880.3460398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel DNN watermarking method that utilizes a learnable image transformation method with a secret key. The proposed method embeds a watermark pattern in a model by using learnable transformed images and allows us to remotely verify the ownership of the model. As a result, it is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark, and adding a new watermark decreases the model accuracy unlike most of the existing DNN watermarking methods. In addition, it does not require a special pre-defined training set or trigger set. We empirically evaluated the proposed method on the CIFAR-10 dataset. The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.\",\"PeriodicalId\":120300,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437880.3460398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piracy-Resistant DNN Watermarking by Block-Wise Image Transformation with Secret Key
In this paper, we propose a novel DNN watermarking method that utilizes a learnable image transformation method with a secret key. The proposed method embeds a watermark pattern in a model by using learnable transformed images and allows us to remotely verify the ownership of the model. As a result, it is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark, and adding a new watermark decreases the model accuracy unlike most of the existing DNN watermarking methods. In addition, it does not require a special pre-defined training set or trigger set. We empirically evaluated the proposed method on the CIFAR-10 dataset. The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.