{"title":"印度道路交通事故与死亡率的关系:基于大数据的案例研究","authors":"Subha Koley, S. Srivastava, P. Ghosal","doi":"10.1109/ises.2018.00045","DOIUrl":null,"url":null,"abstract":"Number of vehicles on Indian roads is increasing at a very high rate every year and the number of road accidents is rising at a similar rate. In 2016, around half a million (reported) people were injured in India due to different types of road accidents and out of them, around 150,000 people were killed. This leads to a very serious concern that there are some major flaws in emergency rescue services in the country. Big Data analysis and different statistical models can identify accident frequencies and patterns in a region, which may be useful to identify accident-prone regions in the country. A centralized database of all possible rescue authorities with their exact location and contact information can be a very important part of a smart accident reporting system and rescue operations. In this paper, we have studied the number of injuries in road accidents and deaths in most of the Indian states and proposed a model correlating them with the number of hospitals and police stations available in those states. This model will help not only to figure out critical accident-prone states in India but also to create a database for an emergency rescue system. The data used for this model has been generated using Google Radar Search and Reverse Geocoding API that can be very much useful to accelerate development of emergency rescue operations needed for Indian road systems and can be replicated easily for other countries.","PeriodicalId":447663,"journal":{"name":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlating Fatality Rate to Road Accidents in India: A Case Study Using Big Data\",\"authors\":\"Subha Koley, S. Srivastava, P. Ghosal\",\"doi\":\"10.1109/ises.2018.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Number of vehicles on Indian roads is increasing at a very high rate every year and the number of road accidents is rising at a similar rate. In 2016, around half a million (reported) people were injured in India due to different types of road accidents and out of them, around 150,000 people were killed. This leads to a very serious concern that there are some major flaws in emergency rescue services in the country. Big Data analysis and different statistical models can identify accident frequencies and patterns in a region, which may be useful to identify accident-prone regions in the country. A centralized database of all possible rescue authorities with their exact location and contact information can be a very important part of a smart accident reporting system and rescue operations. In this paper, we have studied the number of injuries in road accidents and deaths in most of the Indian states and proposed a model correlating them with the number of hospitals and police stations available in those states. This model will help not only to figure out critical accident-prone states in India but also to create a database for an emergency rescue system. The data used for this model has been generated using Google Radar Search and Reverse Geocoding API that can be very much useful to accelerate development of emergency rescue operations needed for Indian road systems and can be replicated easily for other countries.\",\"PeriodicalId\":447663,\"journal\":{\"name\":\"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ises.2018.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ises.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correlating Fatality Rate to Road Accidents in India: A Case Study Using Big Data
Number of vehicles on Indian roads is increasing at a very high rate every year and the number of road accidents is rising at a similar rate. In 2016, around half a million (reported) people were injured in India due to different types of road accidents and out of them, around 150,000 people were killed. This leads to a very serious concern that there are some major flaws in emergency rescue services in the country. Big Data analysis and different statistical models can identify accident frequencies and patterns in a region, which may be useful to identify accident-prone regions in the country. A centralized database of all possible rescue authorities with their exact location and contact information can be a very important part of a smart accident reporting system and rescue operations. In this paper, we have studied the number of injuries in road accidents and deaths in most of the Indian states and proposed a model correlating them with the number of hospitals and police stations available in those states. This model will help not only to figure out critical accident-prone states in India but also to create a database for an emergency rescue system. The data used for this model has been generated using Google Radar Search and Reverse Geocoding API that can be very much useful to accelerate development of emergency rescue operations needed for Indian road systems and can be replicated easily for other countries.