平均编辑距离细菌突变算法的有效优化

Tiong Yew Tang, S. Egerton, János Botzheim, N. Kubota
{"title":"平均编辑距离细菌突变算法的有效优化","authors":"Tiong Yew Tang, S. Egerton, János Botzheim, N. Kubota","doi":"10.1109/RIISS.2014.7009162","DOIUrl":null,"url":null,"abstract":"In the field of Evolutionary Computation (EC), many algorithms have been proposed to enhance the optimisation search performance in NP-Hard problems. Recently, EC research trends have focused on memetic algorithms that combine local and global optimisation search. One of the state-of-the-art memetic EC methods named Bacterial Memetic Algorithm (BMA) has given good optimisation results. In this paper, the objective is to improve the existing BMA optimisation performance without significant impact to its processing cost. Therefore, we propose a novel algorithm called Average Edit Distance Bacterial Mutation (AEDBM) algorithm that improves the bacterial mutation operator in BMA. The AEDBM algorithm performs edit distance similarity comparisons for each selected mutation elements with other bacterial clones before assigning the selected elements to the clones. In this way, AEDBM will minimise bad (similar elements) bacterial mutation to other bacterial clones and thus improve the overall optimisation performance. We investigate the proposed AEDBM algorithm on commonly used datasets in fuzzy logic system analysis. We also apply the proposed method to train a robotic learning agent's perception-action mapping dataset. Experimental results show that the proposed AEDBM approach in most cases gains consistent mean square error optimisation performance improvements over the benchmark approach with only minimal impact to processing cost.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Average Edit Distance Bacterial Mutation Algorithm for effective optimisation\",\"authors\":\"Tiong Yew Tang, S. Egerton, János Botzheim, N. Kubota\",\"doi\":\"10.1109/RIISS.2014.7009162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of Evolutionary Computation (EC), many algorithms have been proposed to enhance the optimisation search performance in NP-Hard problems. Recently, EC research trends have focused on memetic algorithms that combine local and global optimisation search. One of the state-of-the-art memetic EC methods named Bacterial Memetic Algorithm (BMA) has given good optimisation results. In this paper, the objective is to improve the existing BMA optimisation performance without significant impact to its processing cost. Therefore, we propose a novel algorithm called Average Edit Distance Bacterial Mutation (AEDBM) algorithm that improves the bacterial mutation operator in BMA. The AEDBM algorithm performs edit distance similarity comparisons for each selected mutation elements with other bacterial clones before assigning the selected elements to the clones. In this way, AEDBM will minimise bad (similar elements) bacterial mutation to other bacterial clones and thus improve the overall optimisation performance. We investigate the proposed AEDBM algorithm on commonly used datasets in fuzzy logic system analysis. We also apply the proposed method to train a robotic learning agent's perception-action mapping dataset. Experimental results show that the proposed AEDBM approach in most cases gains consistent mean square error optimisation performance improvements over the benchmark approach with only minimal impact to processing cost.\",\"PeriodicalId\":270157,\"journal\":{\"name\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIISS.2014.7009162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在进化计算领域,已经提出了许多算法来提高NP-Hard问题的优化搜索性能。最近,电子商务的研究趋势集中在结合局部和全局优化搜索的模因算法上。细菌模因算法(BMA)是目前最先进的模因电子商务方法之一,具有良好的优化效果。在本文中,目标是在不显著影响其处理成本的情况下提高现有BMA优化性能。因此,我们提出了一种新的算法,称为平均编辑距离细菌突变(AEDBM)算法,该算法改进了BMA中的细菌突变算子。AEDBM算法在将选定的元素分配给克隆之前,将每个选定的突变元素与其他细菌克隆进行编辑距离相似性比较。通过这种方式,AEDBM将最小化坏(类似元素)细菌突变到其他细菌克隆,从而提高整体优化性能。研究了模糊逻辑系统分析中常用数据集上的AEDBM算法。我们还将提出的方法应用于训练机器人学习代理的感知-动作映射数据集。实验结果表明,在大多数情况下,所提出的AEDBM方法比基准方法获得一致的均方误差优化性能改进,而对处理成本的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Average Edit Distance Bacterial Mutation Algorithm for effective optimisation
In the field of Evolutionary Computation (EC), many algorithms have been proposed to enhance the optimisation search performance in NP-Hard problems. Recently, EC research trends have focused on memetic algorithms that combine local and global optimisation search. One of the state-of-the-art memetic EC methods named Bacterial Memetic Algorithm (BMA) has given good optimisation results. In this paper, the objective is to improve the existing BMA optimisation performance without significant impact to its processing cost. Therefore, we propose a novel algorithm called Average Edit Distance Bacterial Mutation (AEDBM) algorithm that improves the bacterial mutation operator in BMA. The AEDBM algorithm performs edit distance similarity comparisons for each selected mutation elements with other bacterial clones before assigning the selected elements to the clones. In this way, AEDBM will minimise bad (similar elements) bacterial mutation to other bacterial clones and thus improve the overall optimisation performance. We investigate the proposed AEDBM algorithm on commonly used datasets in fuzzy logic system analysis. We also apply the proposed method to train a robotic learning agent's perception-action mapping dataset. Experimental results show that the proposed AEDBM approach in most cases gains consistent mean square error optimisation performance improvements over the benchmark approach with only minimal impact to processing cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信