健康新闻提要:在tweet中识别与个人相关的健康相关url

Robert Steele, K. Min
{"title":"健康新闻提要:在tweet中识别与个人相关的健康相关url","authors":"Robert Steele, K. Min","doi":"10.1109/ICIEA.2012.6360778","DOIUrl":null,"url":null,"abstract":"A common use of micro-blogging systems, such as Twitter, is to `tweet' or `re-tweet' URLs of the latest news articles. The challenge is that with the large number of such micro-blog posts, it is difficult to find and filter to just the most relevant news for an individual. In this paper, we propose and detail the health news feed system which utilises a three-stage filtering and categorisation process with three types of knowledge resources using natural language processing (NLP) technologies for filtering and extracting personally-relevant health-related news articles referred to in tweets. The three stages are term-based filtering, content filtering, and categorization.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"53 87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Health news feed: Identifying personally relevant health-related URLs in tweets\",\"authors\":\"Robert Steele, K. Min\",\"doi\":\"10.1109/ICIEA.2012.6360778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common use of micro-blogging systems, such as Twitter, is to `tweet' or `re-tweet' URLs of the latest news articles. The challenge is that with the large number of such micro-blog posts, it is difficult to find and filter to just the most relevant news for an individual. In this paper, we propose and detail the health news feed system which utilises a three-stage filtering and categorisation process with three types of knowledge resources using natural language processing (NLP) technologies for filtering and extracting personally-relevant health-related news articles referred to in tweets. The three stages are term-based filtering, content filtering, and categorization.\",\"PeriodicalId\":220747,\"journal\":{\"name\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"53 87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2012.6360778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微博系统(如Twitter)的一个常见用途是“tweet”或“转发”最新新闻文章的url。挑战在于,由于此类微博帖子数量庞大,很难找到并过滤出与个人最相关的新闻。在本文中,我们提出并详细介绍了健康新闻提要系统,该系统利用三种知识资源的三阶段过滤和分类过程,使用自然语言处理(NLP)技术过滤和提取推文中提到的与个人相关的健康相关新闻文章。这三个阶段是基于术语的过滤、内容过滤和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Health news feed: Identifying personally relevant health-related URLs in tweets
A common use of micro-blogging systems, such as Twitter, is to `tweet' or `re-tweet' URLs of the latest news articles. The challenge is that with the large number of such micro-blog posts, it is difficult to find and filter to just the most relevant news for an individual. In this paper, we propose and detail the health news feed system which utilises a three-stage filtering and categorisation process with three types of knowledge resources using natural language processing (NLP) technologies for filtering and extracting personally-relevant health-related news articles referred to in tweets. The three stages are term-based filtering, content filtering, and categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信