用风格模仿生成记录到文本

Shuai Lin, Wentao Wang, Zichao Yang, Xiaodan Liang, Frank F. Xu, E. Xing, Zhiting Hu
{"title":"用风格模仿生成记录到文本","authors":"Shuai Lin, Wentao Wang, Zichao Yang, Xiaodan Liang, Frank F. Xu, E. Xing, Zhiting Hu","doi":"10.18653/v1/2020.findings-emnlp.144","DOIUrl":null,"url":null,"abstract":"Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., sentence structures, word choices). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as “soft” templates. That is, a model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.","PeriodicalId":321839,"journal":{"name":"Findings of the Association for Computational Linguistics: EMNLP 2020","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Record-to-Text Generation with Style Imitation\",\"authors\":\"Shuai Lin, Wentao Wang, Zichao Yang, Xiaodan Liang, Frank F. Xu, E. Xing, Zhiting Hu\",\"doi\":\"10.18653/v1/2020.findings-emnlp.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., sentence structures, word choices). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as “soft” templates. That is, a model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.\",\"PeriodicalId\":321839,\"journal\":{\"name\":\"Findings of the Association for Computational Linguistics: EMNLP 2020\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings of the Association for Computational Linguistics: EMNLP 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.findings-emnlp.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings of the Association for Computational Linguistics: EMNLP 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.findings-emnlp.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

最近的数据到文本生成的神经方法主要集中在提高内容保真度,而缺乏对写作风格的明确控制(例如,句子结构,单词选择)。更传统的系统使用模板来确定文本的实现。然而,手工或自动构建高质量的模板是困难的,并且当模板不能完全匹配记录时,充当硬约束的模板可能会损害内容的保真度。我们研究了一种新的文体控制方法,即用现有的句子作为“软”模板。也就是说,模型学习模仿任何给定范例句子的写作风格,并自动适应以忠实地描述记录。由于缺乏并行数据,这个问题具有挑战性。我们开发了一种神经方法,该方法包括混合注意-复制机制,在弱监督下学习,并通过新的内容覆盖约束进行增强。我们在餐馆和体育领域进行实验。结果表明,我们的方法取得了比一系列比较方法更强的性能。我们的方法很好地平衡了内容保真度和样式控制之间的关系,给出了在不同程度上匹配记录的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Record-to-Text Generation with Style Imitation
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., sentence structures, word choices). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as “soft” templates. That is, a model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信