基于深度信念网络的船舶自动舵研究

Li Shaowei, Wang Sheng-zheng
{"title":"基于深度信念网络的船舶自动舵研究","authors":"Li Shaowei, Wang Sheng-zheng","doi":"10.18178/wcse.2019.06.139","DOIUrl":null,"url":null,"abstract":"1 School of Mathematics and Computer Science, Jianghan University, Hubei, China 2 Merchant Marine College, Shanghai Maritime University, Shanghai, China Abstract. In order to improve the control precision of the existing ship autopilot and improve the adaptive capability of the autopilot, an autopilot control algorithm based on the deep confidence network (DBN) is proposed. First of all, using the contrast divergence algorithm and the data recorded in the examination system of the Shanghai Maritime University, the constrained Boltzmann machines (RBMs) that make up each DBN are pre-trained in turn, and the results are used as the depth nerve Network weight of the initial value. On this basis, the back propagation algorithm is used to fine-tune the multi-layer depth structure. The simulation results show that the simulated sailing error between this method and the master captain is only 5.2%.","PeriodicalId":342228,"journal":{"name":"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of Ship Autopilot Rudder Based on Deep Belief Network\",\"authors\":\"Li Shaowei, Wang Sheng-zheng\",\"doi\":\"10.18178/wcse.2019.06.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1 School of Mathematics and Computer Science, Jianghan University, Hubei, China 2 Merchant Marine College, Shanghai Maritime University, Shanghai, China Abstract. In order to improve the control precision of the existing ship autopilot and improve the adaptive capability of the autopilot, an autopilot control algorithm based on the deep confidence network (DBN) is proposed. First of all, using the contrast divergence algorithm and the data recorded in the examination system of the Shanghai Maritime University, the constrained Boltzmann machines (RBMs) that make up each DBN are pre-trained in turn, and the results are used as the depth nerve Network weight of the initial value. On this basis, the back propagation algorithm is used to fine-tune the multi-layer depth structure. The simulation results show that the simulated sailing error between this method and the master captain is only 5.2%.\",\"PeriodicalId\":342228,\"journal\":{\"name\":\"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/wcse.2019.06.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/wcse.2019.06.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1江汉大学数学与计算机科学学院,湖北2上海海事大学商船学院,上海为了提高现有船舶自动驾驶仪的控制精度,提高自动驾驶仪的自适应能力,提出了一种基于深度置信网络(DBN)的自动驾驶仪控制算法。首先,利用对比发散算法和上海海事大学考试系统中记录的数据,依次对构成每个DBN的约束玻尔兹曼机(constrained Boltzmann machines, rbm)进行预训练,并将训练结果作为初始值的深度神经网络权值。在此基础上,利用反向传播算法对多层深度结构进行微调。仿真结果表明,该方法与船长的模拟航行误差仅为5.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of Ship Autopilot Rudder Based on Deep Belief Network
1 School of Mathematics and Computer Science, Jianghan University, Hubei, China 2 Merchant Marine College, Shanghai Maritime University, Shanghai, China Abstract. In order to improve the control precision of the existing ship autopilot and improve the adaptive capability of the autopilot, an autopilot control algorithm based on the deep confidence network (DBN) is proposed. First of all, using the contrast divergence algorithm and the data recorded in the examination system of the Shanghai Maritime University, the constrained Boltzmann machines (RBMs) that make up each DBN are pre-trained in turn, and the results are used as the depth nerve Network weight of the initial value. On this basis, the back propagation algorithm is used to fine-tune the multi-layer depth structure. The simulation results show that the simulated sailing error between this method and the master captain is only 5.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信