基于级联遗传算法的模糊系统设计

H. Heider, T. Drabe
{"title":"基于级联遗传算法的模糊系统设计","authors":"H. Heider, T. Drabe","doi":"10.1109/ICEC.1997.592378","DOIUrl":null,"url":null,"abstract":"A cascaded genetic algorithm is presented which automatically generates very efficient fuzzy systems with a minimal number of fuzzy sets and rules. Applications arise with complex systems which are hard to design and optimize manually. Tests on fuzzy controller design show that the proposed algorithm is superior to a conventional genetic algorithm.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fuzzy system design with a cascaded genetic algorithm\",\"authors\":\"H. Heider, T. Drabe\",\"doi\":\"10.1109/ICEC.1997.592378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cascaded genetic algorithm is presented which automatically generates very efficient fuzzy systems with a minimal number of fuzzy sets and rules. Applications arise with complex systems which are hard to design and optimize manually. Tests on fuzzy controller design show that the proposed algorithm is superior to a conventional genetic algorithm.\",\"PeriodicalId\":167852,\"journal\":{\"name\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1997.592378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种级联遗传算法,它能以最少的模糊集和规则自动生成高效的模糊系统。应用出现在复杂的系统中,这些系统很难手工设计和优化。对模糊控制器设计的实验表明,该算法优于传统的遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy system design with a cascaded genetic algorithm
A cascaded genetic algorithm is presented which automatically generates very efficient fuzzy systems with a minimal number of fuzzy sets and rules. Applications arise with complex systems which are hard to design and optimize manually. Tests on fuzzy controller design show that the proposed algorithm is superior to a conventional genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信