移动目标轨迹的鲁棒相似性度量

M. Vlachos, D. Gunopulos, G. Kollios
{"title":"移动目标轨迹的鲁棒相似性度量","authors":"M. Vlachos, D. Gunopulos, G. Kollios","doi":"10.1109/DEXA.2002.1045983","DOIUrl":null,"url":null,"abstract":"We investigate techniques for similarity analysis of spatio-temporal trajectories for mobile objects. Such data may contain a large number of outliers, which degrade the performance of Euclidean and time warping distance. Therefore, we propose the use of non-metric distance functions based on the longest common subsequence (LCSS), in conjunction with a sigmoidal matching function. Finally, we compare these new methods to various L/sub p/ norms and also to time warping distance (for real and synthetic data) and present experimental results that validate the accuracy and efficiency of our approach, especially in the presence of noise.","PeriodicalId":254550,"journal":{"name":"Proceedings. 13th International Workshop on Database and Expert Systems Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Robust similarity measures for mobile object trajectories\",\"authors\":\"M. Vlachos, D. Gunopulos, G. Kollios\",\"doi\":\"10.1109/DEXA.2002.1045983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate techniques for similarity analysis of spatio-temporal trajectories for mobile objects. Such data may contain a large number of outliers, which degrade the performance of Euclidean and time warping distance. Therefore, we propose the use of non-metric distance functions based on the longest common subsequence (LCSS), in conjunction with a sigmoidal matching function. Finally, we compare these new methods to various L/sub p/ norms and also to time warping distance (for real and synthetic data) and present experimental results that validate the accuracy and efficiency of our approach, especially in the presence of noise.\",\"PeriodicalId\":254550,\"journal\":{\"name\":\"Proceedings. 13th International Workshop on Database and Expert Systems Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 13th International Workshop on Database and Expert Systems Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2002.1045983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 13th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2002.1045983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

我们研究了移动物体时空轨迹的相似性分析技术。这样的数据可能包含大量的异常值,这降低了欧氏距离和时间翘曲距离的性能。因此,我们建议使用基于最长公共子序列(LCSS)的非度量距离函数,并结合s型匹配函数。最后,我们将这些新方法与各种L/sub p/规范以及时间翘曲距离(用于真实和合成数据)进行了比较,并提出了实验结果,验证了我们方法的准确性和效率,特别是在存在噪声的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust similarity measures for mobile object trajectories
We investigate techniques for similarity analysis of spatio-temporal trajectories for mobile objects. Such data may contain a large number of outliers, which degrade the performance of Euclidean and time warping distance. Therefore, we propose the use of non-metric distance functions based on the longest common subsequence (LCSS), in conjunction with a sigmoidal matching function. Finally, we compare these new methods to various L/sub p/ norms and also to time warping distance (for real and synthetic data) and present experimental results that validate the accuracy and efficiency of our approach, especially in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信