R. Hebner, A. Gattozzi, S. Strank, S. Pish, J. Herbst
{"title":"海军舰艇上MVDC超导配电的电气和热系统考虑","authors":"R. Hebner, A. Gattozzi, S. Strank, S. Pish, J. Herbst","doi":"10.1109/ESTS.2017.8069342","DOIUrl":null,"url":null,"abstract":"The interest in using a superconducting (SC) distribution grid on a ship designed with a medium voltage dc (MVDC) system is a natural one, because superconductors (SCs) perform at their best under dc power. The potential advantages could be reduced losses, smaller cable plant size, and an electrically stiffer power bus. However, the use of SCs, does not eliminate losses completely and requires additional ancillary equipment. This paper provides an initial assessment of the potential benefits accrued from its adoption compared to any additional overhead, residual losses, and risk associated with a brand new shipboard system.","PeriodicalId":227033,"journal":{"name":"2017 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electrical and thermal system considerations for MVDC superconducting distribution on navy ships\",\"authors\":\"R. Hebner, A. Gattozzi, S. Strank, S. Pish, J. Herbst\",\"doi\":\"10.1109/ESTS.2017.8069342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interest in using a superconducting (SC) distribution grid on a ship designed with a medium voltage dc (MVDC) system is a natural one, because superconductors (SCs) perform at their best under dc power. The potential advantages could be reduced losses, smaller cable plant size, and an electrically stiffer power bus. However, the use of SCs, does not eliminate losses completely and requires additional ancillary equipment. This paper provides an initial assessment of the potential benefits accrued from its adoption compared to any additional overhead, residual losses, and risk associated with a brand new shipboard system.\",\"PeriodicalId\":227033,\"journal\":{\"name\":\"2017 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2017.8069342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2017.8069342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical and thermal system considerations for MVDC superconducting distribution on navy ships
The interest in using a superconducting (SC) distribution grid on a ship designed with a medium voltage dc (MVDC) system is a natural one, because superconductors (SCs) perform at their best under dc power. The potential advantages could be reduced losses, smaller cable plant size, and an electrically stiffer power bus. However, the use of SCs, does not eliminate losses completely and requires additional ancillary equipment. This paper provides an initial assessment of the potential benefits accrued from its adoption compared to any additional overhead, residual losses, and risk associated with a brand new shipboard system.