WISEFUSE

Ashraf Y. Mahgoub, E. Yi, Karthick Shankar, Eshaan Minocha, S. Elnikety, S. Bagchi, S. Chaterji
{"title":"WISEFUSE","authors":"Ashraf Y. Mahgoub, E. Yi, Karthick Shankar, Eshaan Minocha, S. Elnikety, S. Bagchi, S. Chaterji","doi":"10.1145/3530892","DOIUrl":null,"url":null,"abstract":"We characterize production workloads of serverless DAGs at a major cloud provider. Our analysis highlights two major factors that limit performance: (a) lack of efficient communication methods between the serverless functions in the DAG, and (b) stragglers when a DAG stage invokes a set of parallel functions that must complete before starting the next DAG stage. To address these limitations, we propose WISEFUSE, an automated approach to generate an optimized execution plan for serverless DAGs for a user-specified latency objective or budget. We introduce three optimizations: (1) Fusion combines in-series functions together in a single VM to reduce the communication overhead between cascaded functions. (2) Bundling executes a group of parallel invocations of a function in one VM to improve resource sharing among the parallel workers to reduce skew. (3) Resource Allocation assigns the right VM size to each function or function bundle in the DAG to reduce the E2E latency and cost. We implement WISEFUSE to evaluate it experimentally using three popular serverless applications with different DAG structures, memory footprints, and intermediate data sizes. Compared to competing approaches and other alternatives, WISEFUSE shows significant improvements in E2E latency and cost. Specifically, for a machine learning pipeline, WISEFUSE achieves P95 latency that is 67% lower than Photons, 39% lower than Faastlane, and 90% lower than SONIC without increasing the cost.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"WISEFUSE\",\"authors\":\"Ashraf Y. Mahgoub, E. Yi, Karthick Shankar, Eshaan Minocha, S. Elnikety, S. Bagchi, S. Chaterji\",\"doi\":\"10.1145/3530892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize production workloads of serverless DAGs at a major cloud provider. Our analysis highlights two major factors that limit performance: (a) lack of efficient communication methods between the serverless functions in the DAG, and (b) stragglers when a DAG stage invokes a set of parallel functions that must complete before starting the next DAG stage. To address these limitations, we propose WISEFUSE, an automated approach to generate an optimized execution plan for serverless DAGs for a user-specified latency objective or budget. We introduce three optimizations: (1) Fusion combines in-series functions together in a single VM to reduce the communication overhead between cascaded functions. (2) Bundling executes a group of parallel invocations of a function in one VM to improve resource sharing among the parallel workers to reduce skew. (3) Resource Allocation assigns the right VM size to each function or function bundle in the DAG to reduce the E2E latency and cost. We implement WISEFUSE to evaluate it experimentally using three popular serverless applications with different DAG structures, memory footprints, and intermediate data sizes. Compared to competing approaches and other alternatives, WISEFUSE shows significant improvements in E2E latency and cost. Specifically, for a machine learning pipeline, WISEFUSE achieves P95 latency that is 67% lower than Photons, 39% lower than Faastlane, and 90% lower than SONIC without increasing the cost.\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3530892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们描述了一家主要云提供商的无服务器dag的生产工作负载。我们的分析强调了限制性能的两个主要因素:(a) DAG中无服务器函数之间缺乏有效的通信方法,以及(b)当DAG阶段调用一组必须在开始下一个DAG阶段之前完成的并行函数时,会出现离散。为了解决这些限制,我们提出了WISEFUSE,这是一种自动方法,可以根据用户指定的延迟目标或预算为无服务器dag生成优化的执行计划。我们介绍了三个优化:(1)Fusion将串联功能组合在单个VM中,以减少级联功能之间的通信开销。(2)捆绑在一个VM中执行一组函数的并行调用,以提高并行工作者之间的资源共享,减少倾斜。(3)资源分配为DAG中的每个功能或功能包分配合适的虚拟机大小,以减少端到端延迟和成本。我们使用三种流行的无服务器应用程序(具有不同的DAG结构、内存占用和中间数据大小)来实现WISEFUSE并对其进行实验评估。与竞争方法和其他替代方法相比,WISEFUSE在端到端延迟和成本方面有显著改善。具体来说,对于机器学习管道,WISEFUSE实现的P95延迟比photon低67%,比fastlane低39%,比SONIC低90%,而不会增加成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WISEFUSE
We characterize production workloads of serverless DAGs at a major cloud provider. Our analysis highlights two major factors that limit performance: (a) lack of efficient communication methods between the serverless functions in the DAG, and (b) stragglers when a DAG stage invokes a set of parallel functions that must complete before starting the next DAG stage. To address these limitations, we propose WISEFUSE, an automated approach to generate an optimized execution plan for serverless DAGs for a user-specified latency objective or budget. We introduce three optimizations: (1) Fusion combines in-series functions together in a single VM to reduce the communication overhead between cascaded functions. (2) Bundling executes a group of parallel invocations of a function in one VM to improve resource sharing among the parallel workers to reduce skew. (3) Resource Allocation assigns the right VM size to each function or function bundle in the DAG to reduce the E2E latency and cost. We implement WISEFUSE to evaluate it experimentally using three popular serverless applications with different DAG structures, memory footprints, and intermediate data sizes. Compared to competing approaches and other alternatives, WISEFUSE shows significant improvements in E2E latency and cost. Specifically, for a machine learning pipeline, WISEFUSE achieves P95 latency that is 67% lower than Photons, 39% lower than Faastlane, and 90% lower than SONIC without increasing the cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信