在PoW区块链中最大化智能合约计算

Sourav Das, Nitin Awathare, Ling Ren, V. Ribeiro, U. Bellur
{"title":"在PoW区块链中最大化智能合约计算","authors":"Sourav Das, Nitin Awathare, Ling Ren, V. Ribeiro, U. Bellur","doi":"10.1145/3491053","DOIUrl":null,"url":null,"abstract":"Proof-of-Work (PoW) based blockchains typically allocate only a tiny fraction (e.g., less than 1% for Ethereum) of the average interarrival time (I) between blocks for validating smart contracts present in transactions. In such systems, block validation and PoW mining are typically performed sequentially, the former by CPUs and the latter by ASICs. A trivial increase in validation time (τ) introduces the popularly known Verifier's Dilemma, and as we demonstrate, causes more forking and hurts fairness. Large τ also reduces the tolerance for safety against a Byzantine adversary. Solutions that offload validation to a set of non-chain nodes (a.k.a. off-chain approaches) suffer from trust and performance issues that are non-trivial to resolve. In this paper, we present Tuxedo, the first on-chain protocol to theoretically scale τ/I ≈1 in PoW blockchains. The key innovation in Tuxedo is to perform CPU-based block processing in parallel to ASIC mining. We achieve this by allowing miners to delay validation of transactions in a block by up to ζ blocks, where ζ is a system parameter. We perform security analysis of Tuxedo considering all possible adversarial strategies in a synchronous network with maximum end-to-end delay Δ and demonstrate that Tuxedo achieves security equivalent to known results for longest chain PoW Nakamoto consensus. Our prototype implementation of Tuxedo atop Ethereum demonstrates that it can scale τ without suffering the harmful effects of naive scaling up of τ/I in existing blockchains","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tuxedo: Maximizing Smart Contract Computation in PoW Blockchains\",\"authors\":\"Sourav Das, Nitin Awathare, Ling Ren, V. Ribeiro, U. Bellur\",\"doi\":\"10.1145/3491053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proof-of-Work (PoW) based blockchains typically allocate only a tiny fraction (e.g., less than 1% for Ethereum) of the average interarrival time (I) between blocks for validating smart contracts present in transactions. In such systems, block validation and PoW mining are typically performed sequentially, the former by CPUs and the latter by ASICs. A trivial increase in validation time (τ) introduces the popularly known Verifier's Dilemma, and as we demonstrate, causes more forking and hurts fairness. Large τ also reduces the tolerance for safety against a Byzantine adversary. Solutions that offload validation to a set of non-chain nodes (a.k.a. off-chain approaches) suffer from trust and performance issues that are non-trivial to resolve. In this paper, we present Tuxedo, the first on-chain protocol to theoretically scale τ/I ≈1 in PoW blockchains. The key innovation in Tuxedo is to perform CPU-based block processing in parallel to ASIC mining. We achieve this by allowing miners to delay validation of transactions in a block by up to ζ blocks, where ζ is a system parameter. We perform security analysis of Tuxedo considering all possible adversarial strategies in a synchronous network with maximum end-to-end delay Δ and demonstrate that Tuxedo achieves security equivalent to known results for longest chain PoW Nakamoto consensus. Our prototype implementation of Tuxedo atop Ethereum demonstrates that it can scale τ without suffering the harmful effects of naive scaling up of τ/I in existing blockchains\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于工作量证明(PoW)的区块链通常只分配一小部分(例如,以太坊不到1%)块之间的平均到达时间(I),用于验证交易中存在的智能合约。在这样的系统中,块验证和PoW挖掘通常是顺序执行的,前者由cpu执行,后者由asic执行。验证时间(τ)的微小增加引入了众所周知的验证者困境,并且正如我们所证明的那样,会导致更多的分叉并损害公平。大τ也降低了对拜占庭对手的安全容错性。将验证卸载到一组非链节点(也称为off-chain方法)的解决方案会遇到信任和性能问题,这些问题很难解决。在本文中,我们提出了Tuxedo,这是PoW区块链中第一个理论上缩放τ/I≈1的链上协议。Tuxedo的关键创新是在ASIC挖矿的同时执行基于cpu的块处理。我们通过允许矿工将区块中的交易验证延迟至多ζ个区块来实现这一点,其中ζ是一个系统参数。我们对Tuxedo进行了安全性分析,考虑了同步网络中最大端到端延迟Δ中所有可能的对抗策略,并证明Tuxedo达到了与最长链PoW中本共识的已知结果相当的安全性。我们在以太坊上的Tuxedo原型实现表明,它可以扩展τ,而不会受到现有区块链中初始扩展τ/I的有害影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuxedo: Maximizing Smart Contract Computation in PoW Blockchains
Proof-of-Work (PoW) based blockchains typically allocate only a tiny fraction (e.g., less than 1% for Ethereum) of the average interarrival time (I) between blocks for validating smart contracts present in transactions. In such systems, block validation and PoW mining are typically performed sequentially, the former by CPUs and the latter by ASICs. A trivial increase in validation time (τ) introduces the popularly known Verifier's Dilemma, and as we demonstrate, causes more forking and hurts fairness. Large τ also reduces the tolerance for safety against a Byzantine adversary. Solutions that offload validation to a set of non-chain nodes (a.k.a. off-chain approaches) suffer from trust and performance issues that are non-trivial to resolve. In this paper, we present Tuxedo, the first on-chain protocol to theoretically scale τ/I ≈1 in PoW blockchains. The key innovation in Tuxedo is to perform CPU-based block processing in parallel to ASIC mining. We achieve this by allowing miners to delay validation of transactions in a block by up to ζ blocks, where ζ is a system parameter. We perform security analysis of Tuxedo considering all possible adversarial strategies in a synchronous network with maximum end-to-end delay Δ and demonstrate that Tuxedo achieves security equivalent to known results for longest chain PoW Nakamoto consensus. Our prototype implementation of Tuxedo atop Ethereum demonstrates that it can scale τ without suffering the harmful effects of naive scaling up of τ/I in existing blockchains
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信