二长辉石Ni3As的结构和化学特征及其作为矿物的再验证

P. Bonazzi, L. Bindi
{"title":"二长辉石Ni3As的结构和化学特征及其作为矿物的再验证","authors":"P. Bonazzi, L. Bindi","doi":"10.3749/canmin.2100012","DOIUrl":null,"url":null,"abstract":"\n Dienerite, ideally Ni3As, was discovered in 1919 near Radstadt (Salzburg, Austria) and its description and chemical characterization date back to the 1920s. The paucity of reliable experimental data, as well as the absence of any other documented occurrences of such a mineral in over 80 years, led to the supposition of a typographic error in the transcription of the original chemical analysis, suggesting the mineral might in fact be nickelskutterudite [(Ni,Co,Fe)As3]. As a consequence, the mineral was discredited and deleted in the post-2006 IMA list of valid mineral species. Nonetheless, several minerals having a metal/As ratio close to 3:1 and a description fitting that of dienerite were reported after its discreditation.\n Here we report the discovery of minute inclusions in a sample of josephinite from Josephine Creek (Oregon, USA) exhibiting high optical and electron reflectance. Structural and chemical investigations unequivocally showed that a mineral having cubic structure [a = 9.6206(9) Å, sp. gr. I3d; R1 = 0.0353] and ideal chemical formula Ni3As does exist, suggesting that dienerite could in fact be a valid species.\n The proposal to revalidate dienerite has been approved by the Commission on New Minerals, Nomenclature and Classification (IMA-Proposal 19-E). The neotype is deposited in the mineralogical collections of the Natural History Museum, University of Florence, Italy, under catalogue number 3364/I.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural and chemical characterization of dienerite, Ni3As, and its revalidation as a mineral species\",\"authors\":\"P. Bonazzi, L. Bindi\",\"doi\":\"10.3749/canmin.2100012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dienerite, ideally Ni3As, was discovered in 1919 near Radstadt (Salzburg, Austria) and its description and chemical characterization date back to the 1920s. The paucity of reliable experimental data, as well as the absence of any other documented occurrences of such a mineral in over 80 years, led to the supposition of a typographic error in the transcription of the original chemical analysis, suggesting the mineral might in fact be nickelskutterudite [(Ni,Co,Fe)As3]. As a consequence, the mineral was discredited and deleted in the post-2006 IMA list of valid mineral species. Nonetheless, several minerals having a metal/As ratio close to 3:1 and a description fitting that of dienerite were reported after its discreditation.\\n Here we report the discovery of minute inclusions in a sample of josephinite from Josephine Creek (Oregon, USA) exhibiting high optical and electron reflectance. Structural and chemical investigations unequivocally showed that a mineral having cubic structure [a = 9.6206(9) Å, sp. gr. I3d; R1 = 0.0353] and ideal chemical formula Ni3As does exist, suggesting that dienerite could in fact be a valid species.\\n The proposal to revalidate dienerite has been approved by the Commission on New Minerals, Nomenclature and Classification (IMA-Proposal 19-E). The neotype is deposited in the mineralogical collections of the Natural History Museum, University of Florence, Italy, under catalogue number 3364/I.\",\"PeriodicalId\":134244,\"journal\":{\"name\":\"The Canadian Mineralogist\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Mineralogist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.2100012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.2100012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

双辉石,理想的Ni3As,于1919年在Radstadt(奥地利萨尔茨堡)附近被发现,其描述和化学表征可以追溯到20世纪20年代。由于缺乏可靠的实验数据,以及80多年来没有任何其他记录的这种矿物的出现,导致了对原始化学分析转录的排版错误的假设,表明这种矿物实际上可能是镍晶榴石[(Ni,Co,Fe)As3]。结果,该矿物失去了信誉,并在2006年后的IMA有效矿物名单中被删除。尽管如此,在其失信后,仍报道了几种金属/砷比接近3:1的矿物,其描述与双长辉石相吻合。在这里,我们报告了在美国俄勒冈州约瑟芬溪(Josephine Creek)的约瑟芬矿样品中发现的微小包裹体,它们具有高的光学和电子反射率。结构和化学研究明确表明,一种具有立方结构的矿物[a = 9.6206(9) Å, sp. gr. I3d;R1 = 0.0353],理想的化学式Ni3As确实存在,这表明二长辉石实际上可能是一种有效的物质。新矿物、命名法和分类委员会核可了重新确认双辉石的建议(ima -提案19-E)。该新类型沉积在意大利佛罗伦萨大学自然历史博物馆的矿物学收藏品中,目录号为3364/I。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and chemical characterization of dienerite, Ni3As, and its revalidation as a mineral species
Dienerite, ideally Ni3As, was discovered in 1919 near Radstadt (Salzburg, Austria) and its description and chemical characterization date back to the 1920s. The paucity of reliable experimental data, as well as the absence of any other documented occurrences of such a mineral in over 80 years, led to the supposition of a typographic error in the transcription of the original chemical analysis, suggesting the mineral might in fact be nickelskutterudite [(Ni,Co,Fe)As3]. As a consequence, the mineral was discredited and deleted in the post-2006 IMA list of valid mineral species. Nonetheless, several minerals having a metal/As ratio close to 3:1 and a description fitting that of dienerite were reported after its discreditation. Here we report the discovery of minute inclusions in a sample of josephinite from Josephine Creek (Oregon, USA) exhibiting high optical and electron reflectance. Structural and chemical investigations unequivocally showed that a mineral having cubic structure [a = 9.6206(9) Å, sp. gr. I3d; R1 = 0.0353] and ideal chemical formula Ni3As does exist, suggesting that dienerite could in fact be a valid species. The proposal to revalidate dienerite has been approved by the Commission on New Minerals, Nomenclature and Classification (IMA-Proposal 19-E). The neotype is deposited in the mineralogical collections of the Natural History Museum, University of Florence, Italy, under catalogue number 3364/I.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信