时变和非线性扰动下线性植物的鲁棒稳定性

M. Verma
{"title":"时变和非线性扰动下线性植物的鲁棒稳定性","authors":"M. Verma","doi":"10.1109/CDC.1988.194631","DOIUrl":null,"url":null,"abstract":"The problem of robust stability of linear feedback systems in the presence of time varying and nonlinear perturbations is considered. The basis of the characterizations of robust stability consists of linear fractional transformations which relate possibly unstable and nonlinear perturbations and perturbed plants to stable systems. For nominal finite-dimensional linear time invariant plants subject to a family of linear time varying perturbations the author obtains such a characterization and derives conclusions about robust stability.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust stabilizability of linear plants under time varying and nonlinear perturbations\",\"authors\":\"M. Verma\",\"doi\":\"10.1109/CDC.1988.194631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of robust stability of linear feedback systems in the presence of time varying and nonlinear perturbations is considered. The basis of the characterizations of robust stability consists of linear fractional transformations which relate possibly unstable and nonlinear perturbations and perturbed plants to stable systems. For nominal finite-dimensional linear time invariant plants subject to a family of linear time varying perturbations the author obtains such a characterization and derives conclusions about robust stability.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了时变非线性扰动下线性反馈系统的鲁棒稳定性问题。鲁棒稳定性表征的基础是将可能不稳定的非线性扰动和被摄动对象与稳定系统联系起来的线性分数变换。对于一类线性时变扰动下的名义有限维线性时不变植物,作者得到了这样的刻画,并得出了鲁棒稳定性的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust stabilizability of linear plants under time varying and nonlinear perturbations
The problem of robust stability of linear feedback systems in the presence of time varying and nonlinear perturbations is considered. The basis of the characterizations of robust stability consists of linear fractional transformations which relate possibly unstable and nonlinear perturbations and perturbed plants to stable systems. For nominal finite-dimensional linear time invariant plants subject to a family of linear time varying perturbations the author obtains such a characterization and derives conclusions about robust stability.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信