实时优化锅炉控制与机器学习的可持续性

Yukun Ding, Jinglan Liu, Jinjun Xiong, Meng Jiang, Yiyu Shi
{"title":"实时优化锅炉控制与机器学习的可持续性","authors":"Yukun Ding, Jinglan Liu, Jinjun Xiong, Meng Jiang, Yiyu Shi","doi":"10.1145/3269206.3272024","DOIUrl":null,"url":null,"abstract":"In coal-fired power plants, it is critical to improve the operational efficiency of boilers for sustainability. In this work, we formulate real-time boiler control as an optimization problem that looks for the best distribution of temperature in different zones and oxygen content from the flue to improve the boiler's stability and energy efficiency. We employ an efficient algorithm by integrating appropriate machine learning and optimization techniques. We obtain a large dataset collected from a real boiler for more than two months from our industry partner, and conduct extensive experiments to demonstrate the effectiveness and efficiency of the proposed algorithm.","PeriodicalId":331886,"journal":{"name":"Proceedings of the 27th ACM International Conference on Information and Knowledge Management","volume":"445 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimizing Boiler Control in Real-Time with Machine Learning for Sustainability\",\"authors\":\"Yukun Ding, Jinglan Liu, Jinjun Xiong, Meng Jiang, Yiyu Shi\",\"doi\":\"10.1145/3269206.3272024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In coal-fired power plants, it is critical to improve the operational efficiency of boilers for sustainability. In this work, we formulate real-time boiler control as an optimization problem that looks for the best distribution of temperature in different zones and oxygen content from the flue to improve the boiler's stability and energy efficiency. We employ an efficient algorithm by integrating appropriate machine learning and optimization techniques. We obtain a large dataset collected from a real boiler for more than two months from our industry partner, and conduct extensive experiments to demonstrate the effectiveness and efficiency of the proposed algorithm.\",\"PeriodicalId\":331886,\"journal\":{\"name\":\"Proceedings of the 27th ACM International Conference on Information and Knowledge Management\",\"volume\":\"445 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3269206.3272024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3269206.3272024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在燃煤电厂中,提高锅炉的运行效率对可持续发展至关重要。在这项工作中,我们将锅炉实时控制作为一个优化问题,寻找不同区域温度和烟道含氧量的最佳分布,以提高锅炉的稳定性和能效。我们通过整合适当的机器学习和优化技术,采用了有效的算法。我们从行业合作伙伴那里获得了一个超过两个月的真实锅炉的大型数据集,并进行了大量的实验来证明所提出算法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Boiler Control in Real-Time with Machine Learning for Sustainability
In coal-fired power plants, it is critical to improve the operational efficiency of boilers for sustainability. In this work, we formulate real-time boiler control as an optimization problem that looks for the best distribution of temperature in different zones and oxygen content from the flue to improve the boiler's stability and energy efficiency. We employ an efficient algorithm by integrating appropriate machine learning and optimization techniques. We obtain a large dataset collected from a real boiler for more than two months from our industry partner, and conduct extensive experiments to demonstrate the effectiveness and efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信