利用量子计算增强工业物联网领域的安全性

Syed Farhan Ahmad, Mohamed Yassine Ferjani, Keshav Kasliwal
{"title":"利用量子计算增强工业物联网领域的安全性","authors":"Syed Farhan Ahmad, Mohamed Yassine Ferjani, Keshav Kasliwal","doi":"10.1109/icecs53924.2021.9665527","DOIUrl":null,"url":null,"abstract":"The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Security in the Industrial IoT Sector using Quantum Computing\",\"authors\":\"Syed Farhan Ahmad, Mohamed Yassine Ferjani, Keshav Kasliwal\",\"doi\":\"10.1109/icecs53924.2021.9665527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

边缘计算和机器学习技术的发展促进了工业物联网系统的发展。自主决策和智能制造在当前工业4.0时代蓬勃发展。通过为边缘设备提供更多的计算能力并将其连接到互联网,所谓的网络物理系统很容易受到前所未有的安全威胁。当前行业的安全性是基于使用伪随机数密钥的加密技术。伪随机数生成器生成的密钥构成安全威胁,因为它们可以被恶意第三方预测。在这项工作中,我们提出了一种安全的工业物联网架构,该架构利用量子随机数生成器(QRNG)生成的真随机数。CITRIOT的FireConnect物联网节点用于展示量子安全网络中的概念验证,其中随机密钥由基于云的量子设备生成。我们在真实的量子计算机和量子模拟器上提供了一个QRNG的实现。然后,我们将结果与经典计算机生成的伪随机数进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Security in the Industrial IoT Sector using Quantum Computing
The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信