个性化标签:一种类似大众分类法的推荐电影的方法

HetRec '11 Pub Date : 2011-10-27 DOI:10.1145/2039320.2039328
A. Said, B. Kille, E. W. D. Luca, S. Albayrak
{"title":"个性化标签:一种类似大众分类法的推荐电影的方法","authors":"A. Said, B. Kille, E. W. D. Luca, S. Albayrak","doi":"10.1145/2039320.2039328","DOIUrl":null,"url":null,"abstract":"Movie recommender systems attempt to find movies which are of interest for their users. However, as new movies are added, and new users join movie recommendation services, the problem of recommending suitable items becomes increasingly harder. In this paper, we present a simple way of using a priori movie data in order to improve the accuracy of collaborative filtering recommender systems. The approach decreases the sparsity of the rating matrix by inferring personal ratings on tags assigned to movies. The new tag ratings are used to find which movies to recommend. Experiments performed on data from the movie recommendation community Moviepilot show a positive effect on the quality of recommended items.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Personalizing tags: a folksonomy-like approach for recommending movies\",\"authors\":\"A. Said, B. Kille, E. W. D. Luca, S. Albayrak\",\"doi\":\"10.1145/2039320.2039328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movie recommender systems attempt to find movies which are of interest for their users. However, as new movies are added, and new users join movie recommendation services, the problem of recommending suitable items becomes increasingly harder. In this paper, we present a simple way of using a priori movie data in order to improve the accuracy of collaborative filtering recommender systems. The approach decreases the sparsity of the rating matrix by inferring personal ratings on tags assigned to movies. The new tag ratings are used to find which movies to recommend. Experiments performed on data from the movie recommendation community Moviepilot show a positive effect on the quality of recommended items.\",\"PeriodicalId\":144030,\"journal\":{\"name\":\"HetRec '11\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HetRec '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2039320.2039328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2039320.2039328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

电影推荐系统试图找到用户感兴趣的电影。然而,随着新电影的加入,以及新用户加入电影推荐服务,推荐合适的影片的问题变得越来越困难。在本文中,我们提出了一种使用先验电影数据的简单方法来提高协同过滤推荐系统的准确性。该方法通过推断分配给电影的标签上的个人评级来降低评级矩阵的稀疏性。新的标签评级用于找到推荐的电影。在电影推荐社区Moviepilot的数据上进行的实验表明,这对推荐项目的质量有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalizing tags: a folksonomy-like approach for recommending movies
Movie recommender systems attempt to find movies which are of interest for their users. However, as new movies are added, and new users join movie recommendation services, the problem of recommending suitable items becomes increasingly harder. In this paper, we present a simple way of using a priori movie data in order to improve the accuracy of collaborative filtering recommender systems. The approach decreases the sparsity of the rating matrix by inferring personal ratings on tags assigned to movies. The new tag ratings are used to find which movies to recommend. Experiments performed on data from the movie recommendation community Moviepilot show a positive effect on the quality of recommended items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信