基于LSTM的cnn游客评论情感分析

Jinfeng Gao, Ruxian Yao, Han Lai, Ting-Cheng Chang
{"title":"基于LSTM的cnn游客评论情感分析","authors":"Jinfeng Gao, Ruxian Yao, Han Lai, Ting-Cheng Chang","doi":"10.1109/ECBIOS.2019.8807844","DOIUrl":null,"url":null,"abstract":"This research developed a sentiment analysis system for customers' comments on a scenic spot. It is based on CNNs built on LSTM for text feature extraction under the deep learning framework. The CNNs built on LSTM model applies convolutional filters of CNNs repeatedly operate on the output matrix of LSTM to obtain robust text feature vector. In the experiments, the optimal parameter configurations for each component of CNNs and LSTM are identified separately in the first place. Then, the entire optimal parameter configuration for the integration recognition frame of the system is identified around the optimum of each component. Experimental results demonstrate that the accuracy for sentiment analysis with CNNs built on LSTM model is improved by 3.13% and 1.71% respectively, compared with a single CNNs or LSTM model.","PeriodicalId":165579,"journal":{"name":"2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sentiment Analysis with CNNs Built on LSTM on Tourists Comments\",\"authors\":\"Jinfeng Gao, Ruxian Yao, Han Lai, Ting-Cheng Chang\",\"doi\":\"10.1109/ECBIOS.2019.8807844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research developed a sentiment analysis system for customers' comments on a scenic spot. It is based on CNNs built on LSTM for text feature extraction under the deep learning framework. The CNNs built on LSTM model applies convolutional filters of CNNs repeatedly operate on the output matrix of LSTM to obtain robust text feature vector. In the experiments, the optimal parameter configurations for each component of CNNs and LSTM are identified separately in the first place. Then, the entire optimal parameter configuration for the integration recognition frame of the system is identified around the optimum of each component. Experimental results demonstrate that the accuracy for sentiment analysis with CNNs built on LSTM model is improved by 3.13% and 1.71% respectively, compared with a single CNNs or LSTM model.\",\"PeriodicalId\":165579,\"journal\":{\"name\":\"2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBIOS.2019.8807844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBIOS.2019.8807844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究开发了一个针对景区顾客点评的情感分析系统。它是在深度学习框架下基于LSTM构建的cnn进行文本特征提取。基于LSTM模型构建的cnn利用cnn的卷积滤波器对LSTM的输出矩阵进行重复操作,获得鲁棒的文本特征向量。在实验中,首先分别确定cnn和LSTM各组成部分的最优参数配置。然后,围绕各部件的最优值,确定了系统集成识别框架的整个最优参数配置。实验结果表明,与单个cnn或LSTM模型相比,基于LSTM模型构建的cnn情感分析准确率分别提高了3.13%和1.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis with CNNs Built on LSTM on Tourists Comments
This research developed a sentiment analysis system for customers' comments on a scenic spot. It is based on CNNs built on LSTM for text feature extraction under the deep learning framework. The CNNs built on LSTM model applies convolutional filters of CNNs repeatedly operate on the output matrix of LSTM to obtain robust text feature vector. In the experiments, the optimal parameter configurations for each component of CNNs and LSTM are identified separately in the first place. Then, the entire optimal parameter configuration for the integration recognition frame of the system is identified around the optimum of each component. Experimental results demonstrate that the accuracy for sentiment analysis with CNNs built on LSTM model is improved by 3.13% and 1.71% respectively, compared with a single CNNs or LSTM model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信