基于LZW的口语识别距离度量

S. Basavaraja, T. Sreenivas
{"title":"基于LZW的口语识别距离度量","authors":"S. Basavaraja, T. Sreenivas","doi":"10.1109/ODYSSEY.2006.248103","DOIUrl":null,"url":null,"abstract":"We present a new approach to spoken language modeling for language identification (LID) using the Lempel-Ziv-Welch (LZW) algorithm. The LZW technique is applicable to any kind of tokenization of the speech signal. Because of the efficiency of LZW algorithm to obtain variable length symbol strings in the training data, the LZW codebook captures the essentials of a language effectively. We develop two new deterministic measures for LID based on the LZW algorithm namely: (i) Compression ratio score (LZW-CR) and (ii) weighted discriminant score (LZW-WDS). To assess these measures, we consider error-free tokenization of speech as well as artificially induced noise in the tokenization. It is shown that for a 6 language LID task of OGI-TS database with clean tokenization, the new model (LZW-WDS) performs slightly better than the conventional bigram model. For noisy tokenization, which is the more realistic case, LZW-WDS significantly outperforms the bigram technique","PeriodicalId":215883,"journal":{"name":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LZW Based Distance Measures for Spoken Language Identification\",\"authors\":\"S. Basavaraja, T. Sreenivas\",\"doi\":\"10.1109/ODYSSEY.2006.248103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach to spoken language modeling for language identification (LID) using the Lempel-Ziv-Welch (LZW) algorithm. The LZW technique is applicable to any kind of tokenization of the speech signal. Because of the efficiency of LZW algorithm to obtain variable length symbol strings in the training data, the LZW codebook captures the essentials of a language effectively. We develop two new deterministic measures for LID based on the LZW algorithm namely: (i) Compression ratio score (LZW-CR) and (ii) weighted discriminant score (LZW-WDS). To assess these measures, we consider error-free tokenization of speech as well as artificially induced noise in the tokenization. It is shown that for a 6 language LID task of OGI-TS database with clean tokenization, the new model (LZW-WDS) performs slightly better than the conventional bigram model. For noisy tokenization, which is the more realistic case, LZW-WDS significantly outperforms the bigram technique\",\"PeriodicalId\":215883,\"journal\":{\"name\":\"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ODYSSEY.2006.248103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODYSSEY.2006.248103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种使用Lempel-Ziv-Welch (LZW)算法进行语言识别(LID)口语建模的新方法。LZW技术适用于语音信号的任何类型的标记化。由于LZW算法在训练数据中获得变长符号串的效率,LZW码本可以有效地捕捉语言的本质。在LZW算法的基础上,我们提出了两个新的LID确定性度量,即:(i)压缩比分数(LZW- cr)和(ii)加权判别分数(LZW- wds)。为了评估这些措施,我们考虑了语音的无错误标记化以及标记化中人为诱导的噪声。结果表明,对于OGI-TS数据库的6语言LID任务,新模型(LZW-WDS)的表现略优于传统的双字模型。对于噪声标记化,这是更现实的情况,LZW-WDS明显优于双图技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LZW Based Distance Measures for Spoken Language Identification
We present a new approach to spoken language modeling for language identification (LID) using the Lempel-Ziv-Welch (LZW) algorithm. The LZW technique is applicable to any kind of tokenization of the speech signal. Because of the efficiency of LZW algorithm to obtain variable length symbol strings in the training data, the LZW codebook captures the essentials of a language effectively. We develop two new deterministic measures for LID based on the LZW algorithm namely: (i) Compression ratio score (LZW-CR) and (ii) weighted discriminant score (LZW-WDS). To assess these measures, we consider error-free tokenization of speech as well as artificially induced noise in the tokenization. It is shown that for a 6 language LID task of OGI-TS database with clean tokenization, the new model (LZW-WDS) performs slightly better than the conventional bigram model. For noisy tokenization, which is the more realistic case, LZW-WDS significantly outperforms the bigram technique
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信