HpMC:一种多级存储器架构的能量感知管理系统

Chun-Yi Su, D. Roberts, E. León, K. Cameron, B. D. Supinski, G. Loh, Dimitrios S. Nikolopoulos
{"title":"HpMC:一种多级存储器架构的能量感知管理系统","authors":"Chun-Yi Su, D. Roberts, E. León, K. Cameron, B. D. Supinski, G. Loh, Dimitrios S. Nikolopoulos","doi":"10.1145/2818950.2818974","DOIUrl":null,"url":null,"abstract":"DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multi-level memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.","PeriodicalId":389462,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"HpMC: An Energy-aware Management System of Multi-level Memory Architectures\",\"authors\":\"Chun-Yi Su, D. Roberts, E. León, K. Cameron, B. D. Supinski, G. Loh, Dimitrios S. Nikolopoulos\",\"doi\":\"10.1145/2818950.2818974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multi-level memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.\",\"PeriodicalId\":389462,\"journal\":{\"name\":\"Proceedings of the 2015 International Symposium on Memory Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Symposium on Memory Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818950.2818974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818950.2818974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

由于物理单元设计的限制,DRAM技术在提高容量方面面临密度和功率方面的挑战。为了克服这些限制,系统设计人员正在探索结合DRAM和新兴NVRAM技术的替代解决方案。以前对异构存储器的研究主要集中在两种系统设计上:PCache是一种分层的、包容的存储器系统,HRank是一种扁平的、不包容的存储器系统。我们证明,这两种设计都不能在一套HPC工作负载中普遍实现高性能和能效。在这项工作中,我们研究了一些多级存储器设计对应用程序的性能、功率和能耗的影响。为了实现这一目标并克服研究异构内存可用工具数量有限的问题,我们创建了HMsim,这是一种利用现有内存模拟器实现n级异构内存研究的基础设施。然后,我们提出HpMC,一种新的内存控制器设计,结合了现有管理策略的最佳方面,以提高性能和能源。我们的能量感知内存管理系统基于应用程序的时间局域性在PCache和HRank之间动态切换。我们的研究结果表明,与PCache和HRank相比,HpMC将能耗从13%降低到45%,同时提供与传统DRAM系统相同的带宽和更高的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HpMC: An Energy-aware Management System of Multi-level Memory Architectures
DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multi-level memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信