自组织映射在气溶胶单粒子数据聚类中的应用

Guo-Zhu Wen, Xiaolian Guo, De-shuang Huang, KunHong Liu
{"title":"自组织映射在气溶胶单粒子数据聚类中的应用","authors":"Guo-Zhu Wen, Xiaolian Guo, De-shuang Huang, KunHong Liu","doi":"10.1109/IJCNN.2007.4371093","DOIUrl":null,"url":null,"abstract":"In this paper, self-organizing map (SOM) is used to visualize and cluster the data set of aerosol single particle mass spectrum, which was collected by aerosol time-of-flight mass spectrometry (ATOFMS). In view of the characteristic feature of aerosol particle data, the TF-IDF scheme used widely in document clustering is employed to preprocess. Subsequently for data clustering analysis, a two-level clustering framework is proposed, wherein SOM is firstly used to cluster input data and get the primary results, and then the results are again clustered by semiautomatic k-means algorithm. In order to demonstrate the validity of clustering, the chemical significance for cluster centroid is also investigated, wherein inorganic salts, \"calcium-containing\" particles, biogenic soot particles, and carbonaceous particles etc. are identified.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Self-Organizing Map in Aerosol Single Particles Data Clustering\",\"authors\":\"Guo-Zhu Wen, Xiaolian Guo, De-shuang Huang, KunHong Liu\",\"doi\":\"10.1109/IJCNN.2007.4371093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, self-organizing map (SOM) is used to visualize and cluster the data set of aerosol single particle mass spectrum, which was collected by aerosol time-of-flight mass spectrometry (ATOFMS). In view of the characteristic feature of aerosol particle data, the TF-IDF scheme used widely in document clustering is employed to preprocess. Subsequently for data clustering analysis, a two-level clustering framework is proposed, wherein SOM is firstly used to cluster input data and get the primary results, and then the results are again clustered by semiautomatic k-means algorithm. In order to demonstrate the validity of clustering, the chemical significance for cluster centroid is also investigated, wherein inorganic salts, \\\"calcium-containing\\\" particles, biogenic soot particles, and carbonaceous particles etc. are identified.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用自组织映射(SOM)对气溶胶飞行时间质谱法(ATOFMS)采集的气溶胶单粒子质谱数据集进行可视化和聚类。针对气溶胶粒子数据的特点,采用文献聚类中广泛使用的TF-IDF方案进行预处理。随后,针对数据聚类分析,提出了一种两级聚类框架,首先使用SOM对输入数据进行聚类,得到初级结果,然后使用半自动k-means算法对结果再次聚类。为了证明聚类的有效性,还研究了聚类质心的化学意义,其中识别了无机盐,“含钙”颗粒,生物煤烟颗粒和碳质颗粒等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Self-Organizing Map in Aerosol Single Particles Data Clustering
In this paper, self-organizing map (SOM) is used to visualize and cluster the data set of aerosol single particle mass spectrum, which was collected by aerosol time-of-flight mass spectrometry (ATOFMS). In view of the characteristic feature of aerosol particle data, the TF-IDF scheme used widely in document clustering is employed to preprocess. Subsequently for data clustering analysis, a two-level clustering framework is proposed, wherein SOM is firstly used to cluster input data and get the primary results, and then the results are again clustered by semiautomatic k-means algorithm. In order to demonstrate the validity of clustering, the chemical significance for cluster centroid is also investigated, wherein inorganic salts, "calcium-containing" particles, biogenic soot particles, and carbonaceous particles etc. are identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信