利用数据分析方法提高花生产量的预测推理模型

P. Rithesh Pakkala, B. Shamantha Rai
{"title":"利用数据分析方法提高花生产量的预测推理模型","authors":"P. Rithesh Pakkala, B. Shamantha Rai","doi":"10.1109/DISCOVER55800.2022.9974945","DOIUrl":null,"url":null,"abstract":"A proactive decision-making process relies heavily on prognostic reasoning models. Due to the evolving agronomic conditions, prognostic reasoning models are now required in the agricultural sector for risk management and to increase the productivity of the most important plantation crops. The major goal of this study is to maximize areca nut crop productivity by identifying various combinations of the best features using the formal statistical test chi-square. By giving the questionnaires to the farmers growing the Arecanut crop in the Mangaluru area of Karnataka, the study’s real data set is created. The Nave Bayes, Random Forest, Logistic Regression, and Decision Tree classifiers are used to evaluate the best features discovered by the chi-square test. With a prediction accuracy of 99.67%, it has been discovered that the random forest outperforms other classifiers when it comes to crop yield.","PeriodicalId":264177,"journal":{"name":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Prognostic Reasoning Model for Improving Areacanut Crop Productivity using Data Analytics Approach\",\"authors\":\"P. Rithesh Pakkala, B. Shamantha Rai\",\"doi\":\"10.1109/DISCOVER55800.2022.9974945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A proactive decision-making process relies heavily on prognostic reasoning models. Due to the evolving agronomic conditions, prognostic reasoning models are now required in the agricultural sector for risk management and to increase the productivity of the most important plantation crops. The major goal of this study is to maximize areca nut crop productivity by identifying various combinations of the best features using the formal statistical test chi-square. By giving the questionnaires to the farmers growing the Arecanut crop in the Mangaluru area of Karnataka, the study’s real data set is created. The Nave Bayes, Random Forest, Logistic Regression, and Decision Tree classifiers are used to evaluate the best features discovered by the chi-square test. With a prediction accuracy of 99.67%, it has been discovered that the random forest outperforms other classifiers when it comes to crop yield.\",\"PeriodicalId\":264177,\"journal\":{\"name\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER55800.2022.9974945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER55800.2022.9974945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一个前瞻性的决策过程在很大程度上依赖于预测推理模型。由于不断变化的农艺条件,现在农业部门需要预测推理模型来进行风险管理和提高最重要的种植作物的生产力。本研究的主要目标是通过使用正式统计检验卡方来确定最佳特征的各种组合,从而最大限度地提高槟榔作物的产量。通过向卡纳塔克邦曼格鲁地区种植槟榔的农民发放调查问卷,该研究的真实数据集得以创建。使用朴素贝叶斯、随机森林、逻辑回归和决策树分类器来评估卡方检验发现的最佳特征。在作物产量方面,随机森林的预测准确率达到99.67%,优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prognostic Reasoning Model for Improving Areacanut Crop Productivity using Data Analytics Approach
A proactive decision-making process relies heavily on prognostic reasoning models. Due to the evolving agronomic conditions, prognostic reasoning models are now required in the agricultural sector for risk management and to increase the productivity of the most important plantation crops. The major goal of this study is to maximize areca nut crop productivity by identifying various combinations of the best features using the formal statistical test chi-square. By giving the questionnaires to the farmers growing the Arecanut crop in the Mangaluru area of Karnataka, the study’s real data set is created. The Nave Bayes, Random Forest, Logistic Regression, and Decision Tree classifiers are used to evaluate the best features discovered by the chi-square test. With a prediction accuracy of 99.67%, it has been discovered that the random forest outperforms other classifiers when it comes to crop yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信