基于自适应分类的基于神经网络再训练的视频对象发音和跟踪

N. Doulamis, A. Doulamis, K. Ntalianis
{"title":"基于自适应分类的基于神经网络再训练的视频对象发音和跟踪","authors":"N. Doulamis, A. Doulamis, K. Ntalianis","doi":"10.1109/ICDSP.2002.1028155","DOIUrl":null,"url":null,"abstract":"An adaptive neural network architecture is proposed for efficient video object segmentation and tracking of stereoscopic video sequences. The scheme includes (a) a retraining algorithm for adapting network weights to current conditions; (b) a semantically meaningful object extraction module for creating a retraining set; (c) a decision mechanism, which detects the time instances of a new network retraining. The retraining algorithm optimally adapts network weights by exploiting information of the current conditions and simultaneously minimally degrading the obtained network knowledge. The algorithm results in the minimization of a convex function subject to linear constraints, thus, one minimum exists. Furthermore, a decision mechanism is included to detect the time instances that a new network retraining is required. A description of the current conditions is provided by a segmentation fusion algorithm, which appropriately combines color and depth information.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive classification-based articulation and tracking of video objects employing neural network retraining\",\"authors\":\"N. Doulamis, A. Doulamis, K. Ntalianis\",\"doi\":\"10.1109/ICDSP.2002.1028155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive neural network architecture is proposed for efficient video object segmentation and tracking of stereoscopic video sequences. The scheme includes (a) a retraining algorithm for adapting network weights to current conditions; (b) a semantically meaningful object extraction module for creating a retraining set; (c) a decision mechanism, which detects the time instances of a new network retraining. The retraining algorithm optimally adapts network weights by exploiting information of the current conditions and simultaneously minimally degrading the obtained network knowledge. The algorithm results in the minimization of a convex function subject to linear constraints, thus, one minimum exists. Furthermore, a decision mechanism is included to detect the time instances that a new network retraining is required. A description of the current conditions is provided by a segmentation fusion algorithm, which appropriately combines color and depth information.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种自适应神经网络结构,用于立体视频序列的高效分割和跟踪。该方案包括(a)一种使网络权值适应当前条件的再训练算法;(b)用于创建再训练集的语义上有意义的对象提取模块;(c)决策机制,检测新网络再训练的时间实例。该再训练算法通过利用当前条件的信息来优化网络权值,同时使所获得的网络知识最小化。该算法使受线性约束的凸函数最小化,因此存在一个最小值。此外,还包括一个决策机制来检测需要进行新网络再训练的时间实例。通过适当地结合颜色和深度信息的分割融合算法提供了对当前条件的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive classification-based articulation and tracking of video objects employing neural network retraining
An adaptive neural network architecture is proposed for efficient video object segmentation and tracking of stereoscopic video sequences. The scheme includes (a) a retraining algorithm for adapting network weights to current conditions; (b) a semantically meaningful object extraction module for creating a retraining set; (c) a decision mechanism, which detects the time instances of a new network retraining. The retraining algorithm optimally adapts network weights by exploiting information of the current conditions and simultaneously minimally degrading the obtained network knowledge. The algorithm results in the minimization of a convex function subject to linear constraints, thus, one minimum exists. Furthermore, a decision mechanism is included to detect the time instances that a new network retraining is required. A description of the current conditions is provided by a segmentation fusion algorithm, which appropriately combines color and depth information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信