使用基于引导和套袋的部分聚类来定义皮质沟模式

Z. Sun, D. Rivière, E. Duchesnay, B. Thirion, F. Poupon, J. F. Mangin
{"title":"使用基于引导和套袋的部分聚类来定义皮质沟模式","authors":"Z. Sun, D. Rivière, E. Duchesnay, B. Thirion, F. Poupon, J. F. Mangin","doi":"10.1109/ISBI.2008.4541325","DOIUrl":null,"url":null,"abstract":"The cortical folding patterns are very different from one individual to another. Here we try to find folding patterns automatically using large-scale datasets by non-supervised clustering analysis. The sulci of each brain are detected and identified using the brain VIS A open software. The 3D moment invariants are calculated and used as the shape descriptors of the sulci identified. A partial clustering algorithm using bootstrap sampling and bagging (PCBB) is devised for cortical pattern mining. Partial clusters are found using a modified hierarchical clustering method constrained by an objective function which looks for the most compact and dissimilar clusters. Bagging is used to increase stability. Experiments on simulated and real datasets are used to demonstrate the strength and stability of this algorithm compared to other standard approaches. Some cortical patterns are found using our method. In particular, the patterns found for the left cingulate sulcus are consistent with the patterns described in the atlas of Ono.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Defining cortical sulcus patterns using partial clustering based on bootstrap and bagging\",\"authors\":\"Z. Sun, D. Rivière, E. Duchesnay, B. Thirion, F. Poupon, J. F. Mangin\",\"doi\":\"10.1109/ISBI.2008.4541325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cortical folding patterns are very different from one individual to another. Here we try to find folding patterns automatically using large-scale datasets by non-supervised clustering analysis. The sulci of each brain are detected and identified using the brain VIS A open software. The 3D moment invariants are calculated and used as the shape descriptors of the sulci identified. A partial clustering algorithm using bootstrap sampling and bagging (PCBB) is devised for cortical pattern mining. Partial clusters are found using a modified hierarchical clustering method constrained by an objective function which looks for the most compact and dissimilar clusters. Bagging is used to increase stability. Experiments on simulated and real datasets are used to demonstrate the strength and stability of this algorithm compared to other standard approaches. Some cortical patterns are found using our method. In particular, the patterns found for the left cingulate sulcus are consistent with the patterns described in the atlas of Ono.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

大脑皮层的折叠模式因人而异。在这里,我们尝试使用非监督聚类分析来自动发现大规模数据集的折叠模式。利用脑可视化开放软件对各脑沟进行检测和识别。计算了三维矩不变量,并将其作为所识别沟的形状描述符。提出了一种基于自举采样和装袋(PCBB)的局部聚类算法。在目标函数约束下,采用改进的分层聚类方法寻找最紧凑和最不相似的聚类。装袋是为了增加稳定性。在模拟和真实数据集上的实验证明了该算法与其他标准方法相比的强度和稳定性。用我们的方法发现了一些皮层模式。特别是,左扣带沟的模式与Ono图谱中描述的模式一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining cortical sulcus patterns using partial clustering based on bootstrap and bagging
The cortical folding patterns are very different from one individual to another. Here we try to find folding patterns automatically using large-scale datasets by non-supervised clustering analysis. The sulci of each brain are detected and identified using the brain VIS A open software. The 3D moment invariants are calculated and used as the shape descriptors of the sulci identified. A partial clustering algorithm using bootstrap sampling and bagging (PCBB) is devised for cortical pattern mining. Partial clusters are found using a modified hierarchical clustering method constrained by an objective function which looks for the most compact and dissimilar clusters. Bagging is used to increase stability. Experiments on simulated and real datasets are used to demonstrate the strength and stability of this algorithm compared to other standard approaches. Some cortical patterns are found using our method. In particular, the patterns found for the left cingulate sulcus are consistent with the patterns described in the atlas of Ono.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信