抗老化锌-镁-碳化钨纳米复合材料的研究:微观结构、力学性能、疲劳和体外腐蚀

Zeyi Guan, Chase S. Linsley, S. Pan, Gongcheng Yao, Benjamin M. Wu, D. Levi, Xiaochun Li
{"title":"抗老化锌-镁-碳化钨纳米复合材料的研究:微观结构、力学性能、疲劳和体外腐蚀","authors":"Zeyi Guan, Chase S. Linsley, S. Pan, Gongcheng Yao, Benjamin M. Wu, D. Levi, Xiaochun Li","doi":"10.2139/ssrn.3873674","DOIUrl":null,"url":null,"abstract":"Zinc (Zn) and Zn-based alloys have been extensively studied as innovative materials for bioresorbable stents (BRS) in the last decade due to their favorable biodegradability and biocompatibility. However, most Zn alloys lack the necessary combination of adequate strength, ductility and corrosion rate needed for such clinical applications. Additionally, due to the low melting temperature of Zn, Zn-based alloys are also thermally unstable and undergo microstructural changes over time at ambient and physiological temperatures, which negatively impacts the mechanical properties during storage, implantation, and service. In this study, tungsten carbide (WC) nanoparticles were successfully incorporated into Zn alloyed with 0.5 wt.% magnesium (Mg). The resulting Zn-0.5Mg-WC nanocomposite’s microstructure, mechanical properties, in vitro corrosion rate and aging behavior were evaluated. SEM and TEM microstructural analysis showed that Mg2Zn11 precipitates with a granular morphology formed at the Zn/WC nanoparticle interface. This microstructure resulted in a combination of enhanced strength and ductility, and the Zn-0.5Mg-WC nanocomposite was able to survive at least 10 million cycles of tensile loading. Due to the granular precipitate morphology, the loss of ductility caused by aging was not observed over a 90-day study. Furthermore, the Zn-0.5Mg-WC nanocomposite had an in vitro corrosion rate comparable to pure Zn, which is ideal for BRS applications. Stent prototypes were fabricated using this composition and were successfully deployed during bench testing without fracture. This study shows that the Zn-0.5Mg-WC nanocomposite is a promising material for BRS applications.","PeriodicalId":180833,"journal":{"name":"Mechanical Properties & Deformation of Materials eJournal","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Anti-Aging Zn-Mg-WC Nanocomposites for Bioresorbable Cardiovascular Stents: Microstructure, Mechanical Properties, Fatigue, and in vitro Corrosion\",\"authors\":\"Zeyi Guan, Chase S. Linsley, S. Pan, Gongcheng Yao, Benjamin M. Wu, D. Levi, Xiaochun Li\",\"doi\":\"10.2139/ssrn.3873674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc (Zn) and Zn-based alloys have been extensively studied as innovative materials for bioresorbable stents (BRS) in the last decade due to their favorable biodegradability and biocompatibility. However, most Zn alloys lack the necessary combination of adequate strength, ductility and corrosion rate needed for such clinical applications. Additionally, due to the low melting temperature of Zn, Zn-based alloys are also thermally unstable and undergo microstructural changes over time at ambient and physiological temperatures, which negatively impacts the mechanical properties during storage, implantation, and service. In this study, tungsten carbide (WC) nanoparticles were successfully incorporated into Zn alloyed with 0.5 wt.% magnesium (Mg). The resulting Zn-0.5Mg-WC nanocomposite’s microstructure, mechanical properties, in vitro corrosion rate and aging behavior were evaluated. SEM and TEM microstructural analysis showed that Mg2Zn11 precipitates with a granular morphology formed at the Zn/WC nanoparticle interface. This microstructure resulted in a combination of enhanced strength and ductility, and the Zn-0.5Mg-WC nanocomposite was able to survive at least 10 million cycles of tensile loading. Due to the granular precipitate morphology, the loss of ductility caused by aging was not observed over a 90-day study. Furthermore, the Zn-0.5Mg-WC nanocomposite had an in vitro corrosion rate comparable to pure Zn, which is ideal for BRS applications. Stent prototypes were fabricated using this composition and were successfully deployed during bench testing without fracture. This study shows that the Zn-0.5Mg-WC nanocomposite is a promising material for BRS applications.\",\"PeriodicalId\":180833,\"journal\":{\"name\":\"Mechanical Properties & Deformation of Materials eJournal\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Properties & Deformation of Materials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3873674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Properties & Deformation of Materials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3873674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

锌(Zn)和锌基合金由于其良好的生物可降解性和生物相容性,在过去的十年中作为生物可吸收支架(BRS)的创新材料得到了广泛的研究。然而,大多数锌合金缺乏临床应用所需的足够强度、延展性和腐蚀速率的必要组合。此外,由于锌的熔点较低,锌基合金在环境温度和生理温度下也存在热不稳定性,随着时间的推移会发生显微组织变化,从而对储存、植入和使用期间的力学性能产生负面影响。在这项研究中,碳化钨(WC)纳米颗粒成功地掺入了含0.5% wt.%镁(Mg)的锌合金中。对制备的Zn-0.5Mg-WC纳米复合材料的显微组织、力学性能、体外腐蚀速率和时效行为进行了评价。SEM和TEM显微组织分析表明,Mg2Zn11在Zn/WC纳米颗粒界面处形成颗粒状析出物。这种微观结构使Zn-0.5Mg-WC纳米复合材料的强度和延展性都得到了提高,并且能够承受至少1000万次的拉伸载荷。由于颗粒状沉淀形态,在90天的研究中未观察到时效引起的延展性损失。此外,Zn-0.5 mg - wc纳米复合材料具有与纯Zn相当的体外腐蚀速率,是BRS应用的理想选择。支架原型是用这种成分制作的,并在台架测试中成功部署,没有发生断裂。研究表明,锌-0.5 mg - wc纳米复合材料是一种很有前途的BRS材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Anti-Aging Zn-Mg-WC Nanocomposites for Bioresorbable Cardiovascular Stents: Microstructure, Mechanical Properties, Fatigue, and in vitro Corrosion
Zinc (Zn) and Zn-based alloys have been extensively studied as innovative materials for bioresorbable stents (BRS) in the last decade due to their favorable biodegradability and biocompatibility. However, most Zn alloys lack the necessary combination of adequate strength, ductility and corrosion rate needed for such clinical applications. Additionally, due to the low melting temperature of Zn, Zn-based alloys are also thermally unstable and undergo microstructural changes over time at ambient and physiological temperatures, which negatively impacts the mechanical properties during storage, implantation, and service. In this study, tungsten carbide (WC) nanoparticles were successfully incorporated into Zn alloyed with 0.5 wt.% magnesium (Mg). The resulting Zn-0.5Mg-WC nanocomposite’s microstructure, mechanical properties, in vitro corrosion rate and aging behavior were evaluated. SEM and TEM microstructural analysis showed that Mg2Zn11 precipitates with a granular morphology formed at the Zn/WC nanoparticle interface. This microstructure resulted in a combination of enhanced strength and ductility, and the Zn-0.5Mg-WC nanocomposite was able to survive at least 10 million cycles of tensile loading. Due to the granular precipitate morphology, the loss of ductility caused by aging was not observed over a 90-day study. Furthermore, the Zn-0.5Mg-WC nanocomposite had an in vitro corrosion rate comparable to pure Zn, which is ideal for BRS applications. Stent prototypes were fabricated using this composition and were successfully deployed during bench testing without fracture. This study shows that the Zn-0.5Mg-WC nanocomposite is a promising material for BRS applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信