基于卷积神经网络的高精度大数据集语音情感识别

S. G, Tamilvizhi T, T. V, S. R
{"title":"基于卷积神经网络的高精度大数据集语音情感识别","authors":"S. G, Tamilvizhi T, T. V, S. R","doi":"10.1109/ICCES57224.2023.10192891","DOIUrl":null,"url":null,"abstract":"Emotions are the best indicators of the actions of humans in advance. It is of great advantage in the current smart world. Prediction of these emotions can be able to sense the current mood of the driver and control the smart automobile accordingly and can be used in the case of chatting with customers using AI devices. This can be done by extracting the features including Mel-frequency cepstral coefficients (MFCCs) of the respective emotions and training the learning model using the classification algorithm Convolutional Neural Networks (CNN) and eventually the model can predict the emotion by comparing the newly retrieved features and the features of the training dataset and classify them accordingly.","PeriodicalId":442189,"journal":{"name":"2023 8th International Conference on Communication and Electronics Systems (ICCES)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech Emotion Recognition with High Accuracy and Large Datasets using Convolutional Neural Networks\",\"authors\":\"S. G, Tamilvizhi T, T. V, S. R\",\"doi\":\"10.1109/ICCES57224.2023.10192891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions are the best indicators of the actions of humans in advance. It is of great advantage in the current smart world. Prediction of these emotions can be able to sense the current mood of the driver and control the smart automobile accordingly and can be used in the case of chatting with customers using AI devices. This can be done by extracting the features including Mel-frequency cepstral coefficients (MFCCs) of the respective emotions and training the learning model using the classification algorithm Convolutional Neural Networks (CNN) and eventually the model can predict the emotion by comparing the newly retrieved features and the features of the training dataset and classify them accordingly.\",\"PeriodicalId\":442189,\"journal\":{\"name\":\"2023 8th International Conference on Communication and Electronics Systems (ICCES)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Conference on Communication and Electronics Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES57224.2023.10192891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Communication and Electronics Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES57224.2023.10192891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪是人类行为最好的预先指示器。这在当今的智能世界中具有很大的优势。对这些情绪的预测可以感知驾驶员当前的情绪并相应地控制智能汽车,并且可以在使用AI设备与客户聊天的情况下使用。这可以通过提取包括Mel-frequency倒谱系数(MFCCs)在内的各种情绪的特征,并使用分类算法卷积神经网络(CNN)训练学习模型来完成,最终模型可以通过比较新检索的特征和训练数据集的特征来预测情绪并进行相应的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Emotion Recognition with High Accuracy and Large Datasets using Convolutional Neural Networks
Emotions are the best indicators of the actions of humans in advance. It is of great advantage in the current smart world. Prediction of these emotions can be able to sense the current mood of the driver and control the smart automobile accordingly and can be used in the case of chatting with customers using AI devices. This can be done by extracting the features including Mel-frequency cepstral coefficients (MFCCs) of the respective emotions and training the learning model using the classification algorithm Convolutional Neural Networks (CNN) and eventually the model can predict the emotion by comparing the newly retrieved features and the features of the training dataset and classify them accordingly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信