Alexandr Murashkin, M. Antkiewicz, Derek Rayside, K. Czarnecki
{"title":"生产线工程中最优变量的可视化和探索","authors":"Alexandr Murashkin, M. Antkiewicz, Derek Rayside, K. Czarnecki","doi":"10.1145/2491627.2491647","DOIUrl":null,"url":null,"abstract":"The decision-making process in Product Line Engineering (PLE) is often concerned with variant qualities such as cost, battery life, or security. Pareto-optimal variants, with respect to a set of objectives such as minimizing a variant's cost while maximizing battery life and security, are variants in which no single quality can be improved without sacrificing other qualities. We propose a novel method and a tool for visualization and exploration of a multi-dimensional space of optimal variants (i.e., a Pareto front). The visualization method is an integrated, interactive, and synchronized set of complementary views onto a Pareto front specifically designed to support PLE scenarios, including: understanding differences among variants and their positioning with respect to quality dimensions; solving trade-offs; selecting the most desirable variants; and understanding the impact of changes during product line evolution on a variant's qualities. We present an initial experimental evaluation showing that the visualization method is a good basis for supporting these PLE scenarios.","PeriodicalId":339444,"journal":{"name":"Software Product Lines Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Visualization and exploration of optimal variants in product line engineering\",\"authors\":\"Alexandr Murashkin, M. Antkiewicz, Derek Rayside, K. Czarnecki\",\"doi\":\"10.1145/2491627.2491647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decision-making process in Product Line Engineering (PLE) is often concerned with variant qualities such as cost, battery life, or security. Pareto-optimal variants, with respect to a set of objectives such as minimizing a variant's cost while maximizing battery life and security, are variants in which no single quality can be improved without sacrificing other qualities. We propose a novel method and a tool for visualization and exploration of a multi-dimensional space of optimal variants (i.e., a Pareto front). The visualization method is an integrated, interactive, and synchronized set of complementary views onto a Pareto front specifically designed to support PLE scenarios, including: understanding differences among variants and their positioning with respect to quality dimensions; solving trade-offs; selecting the most desirable variants; and understanding the impact of changes during product line evolution on a variant's qualities. We present an initial experimental evaluation showing that the visualization method is a good basis for supporting these PLE scenarios.\",\"PeriodicalId\":339444,\"journal\":{\"name\":\"Software Product Lines Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Product Lines Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2491627.2491647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Product Lines Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2491627.2491647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualization and exploration of optimal variants in product line engineering
The decision-making process in Product Line Engineering (PLE) is often concerned with variant qualities such as cost, battery life, or security. Pareto-optimal variants, with respect to a set of objectives such as minimizing a variant's cost while maximizing battery life and security, are variants in which no single quality can be improved without sacrificing other qualities. We propose a novel method and a tool for visualization and exploration of a multi-dimensional space of optimal variants (i.e., a Pareto front). The visualization method is an integrated, interactive, and synchronized set of complementary views onto a Pareto front specifically designed to support PLE scenarios, including: understanding differences among variants and their positioning with respect to quality dimensions; solving trade-offs; selecting the most desirable variants; and understanding the impact of changes during product line evolution on a variant's qualities. We present an initial experimental evaluation showing that the visualization method is a good basis for supporting these PLE scenarios.