网络规模的知识收集

Colin Lockard, Prashant Shiralkar, Xin Dong, Hannaneh Hajishirzi
{"title":"网络规模的知识收集","authors":"Colin Lockard, Prashant Shiralkar, Xin Dong, Hannaneh Hajishirzi","doi":"10.1145/3336191.3371878","DOIUrl":null,"url":null,"abstract":"How do we surface the large amount of information present in HTML documents on the Web, from news articles to scientific papers to Rotten Tomatoes pages to tables of sports scores? Such information can enable a variety of applications including knowledge base construction, question answering, recommendation, and more. In this tutorial, we present approaches for Information Extraction (IE) from Web data that can be differentiated along two key dimensions: 1) the diversity in data modality that is leveraged, e.g. text, visual, XML/HTML, and 2) the thrust to develop scalable approaches with zero to limited human supervision. We cover the key ideas and intuition behind existing approaches to emphasize their applicability and potential in various settings.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Web-scale Knowledge Collection\",\"authors\":\"Colin Lockard, Prashant Shiralkar, Xin Dong, Hannaneh Hajishirzi\",\"doi\":\"10.1145/3336191.3371878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How do we surface the large amount of information present in HTML documents on the Web, from news articles to scientific papers to Rotten Tomatoes pages to tables of sports scores? Such information can enable a variety of applications including knowledge base construction, question answering, recommendation, and more. In this tutorial, we present approaches for Information Extraction (IE) from Web data that can be differentiated along two key dimensions: 1) the diversity in data modality that is leveraged, e.g. text, visual, XML/HTML, and 2) the thrust to develop scalable approaches with zero to limited human supervision. We cover the key ideas and intuition behind existing approaches to emphasize their applicability and potential in various settings.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们如何在Web上呈现HTML文档中的大量信息,从新闻文章到科学论文,从烂番茄页面到体育比分表?这些信息可以支持各种应用程序,包括知识库构建、问题回答、推荐等等。在本教程中,我们介绍了从Web数据中提取信息(IE)的方法,这些方法可以根据两个关键维度进行区分:1)所利用的数据模式的多样性,例如文本、可视化、XML/HTML,以及2)开发零到有限人工监督的可扩展方法的动力。我们涵盖了现有方法背后的关键思想和直觉,以强调它们在各种环境中的适用性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web-scale Knowledge Collection
How do we surface the large amount of information present in HTML documents on the Web, from news articles to scientific papers to Rotten Tomatoes pages to tables of sports scores? Such information can enable a variety of applications including knowledge base construction, question answering, recommendation, and more. In this tutorial, we present approaches for Information Extraction (IE) from Web data that can be differentiated along two key dimensions: 1) the diversity in data modality that is leveraged, e.g. text, visual, XML/HTML, and 2) the thrust to develop scalable approaches with zero to limited human supervision. We cover the key ideas and intuition behind existing approaches to emphasize their applicability and potential in various settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信